Страница:
<< 107 108 109 110
111 112 113 >> [Всего задач: 603]
Вписанная окружность треугольника ABC (AB > BC)
касается сторон AB и AC в точках P и Q
соответственно, RS – средняя линия, параллельная стороне AB, T – точка пересечения прямых PQ и RS. Докажите, что точка T лежит на биссектрисе угла B треугольника ABC.
Диагонали параллелограмма ABCD пересекаются в точке O. Точка M лежит на прямой AB, причём ∠AMO = ∠MAD.
Докажите, что точка M равноудалена от точек C и D.
В равнобедренном треугольнике ABC (AC = BC) точка O – центр описанной окружности, точка I – центр вписанной окружности, а точка D на стороне BC такова, что прямые
OD и BI перпендикулярны. Докажите, что прямые ID и AC
параллельны.
В выпуклом четырёхугольнике ABCD известно, что ∠A + ∠D = 120° и AB = BC = CD.
Докажите, что точка пересечения диагоналей равноудалена от вершин A и D.
В трапеции MNPQ (MQ || NP ) угол NQM в два раза меньше угла MPN. Известно, что NP = MP = 13/12, MQ = 12. Найдите площадь трапеции.
Страница:
<< 107 108 109 110
111 112 113 >> [Всего задач: 603]