ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что площадь параллелограмма произведению двух его соседних сторон на синус угла между ними, т.е.

S = ab sin$\displaystyle \gamma$,

где a и b — соседние стороны параллелограмма, $ \gamma$ — угол между ними.

   Решение

Задачи

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 402]      



Задача 54960

Темы:   [ Перегруппировка площадей ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

Докажите, что если какую-либо точку внутри параллелограмма соединить со всеми его вершинами, то сумма площадей двух противолежащих треугольников равна сумме площадей двух других.

Прислать комментарий     Решение


Задача 55706

Темы:   [ Свойства симметрии и центра симметрии ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

Докажите, что четырёхугольник, имеющий центр симметрии,— параллелограмм.

Прислать комментарий     Решение


Задача 108564

Темы:   [ Площадь треугольника (через две стороны и угол между ними) ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

Докажите, что площадь параллелограмма произведению двух его соседних сторон на синус угла между ними, т.е.

S = ab sin$\displaystyle \gamma$,

где a и b — соседние стороны параллелограмма, $ \gamma$ — угол между ними.

Прислать комментарий     Решение


Задача 53505

Темы:   [ Средняя линия треугольника ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

Докажите, что середины двух противоположных сторон любого четырёхугольника и середины его диагоналей являются вершинами параллелограмма.

Прислать комментарий     Решение


Задача 53644

Темы:   [ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

Через точку на стороне четырёхугольника проведена прямая, параллельная диагонали, до пересечения с соседней стороной четырёхугольника. Через полученную точку проведена прямая, параллельная другой диагонали, и т.д. Докажите, что пятая точка, полученная таким способом, совпадет с исходной.

Прислать комментарий     Решение

Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 402]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .