ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Середины сторон выпуклого шестиугольника образуют шестиугольник, противоположные стороны которого параллельны.
Докажите, что большие диагонали исходного шестиугольника пересекаются в одной точке.

   Решение

Задачи

Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 330]      



Задача 98205

Темы:   [ Четырехугольники (построения) ]
[ Построение треугольников по различным элементам ]
[ Средняя линия треугольника ]
[ Параллелограмм Вариньона ]
Сложность: 3+
Классы: 8,9

Построить выпуклый четырёхугольник, зная длины всех сторон и отрезка, соединяющего середины диагоналей.

Прислать комментарий     Решение

Задача 102265

Темы:   [ Теорема синусов ]
[ Отношения линейных элементов подобных треугольников ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9

Окружность радиуса 2 проходит через середины трёх сторон треугольника ABC, в котором углы при вершинах A и B равны 30° и 45° соответственно.
Найдите высоту, проведённую из вершины A.

Прислать комментарий     Решение

Задача 108160

Темы:   [ Признаки и свойства параллелограмма ]
[ Симметрия помогает решить задачу ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9

На стороне AB параллелограмма ABCD (или на её продолжении) взята точка M, для которой  ∠MAD = ∠AMO,  где O – точка пересечения диагоналей параллелограмма. Докажите, что  MD = MC.

Прислать комментарий     Решение

Задача 108881

Темы:   [ Гомотетия помогает решить задачу ]
[ Три прямые, пересекающиеся в одной точке ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9

Середины сторон выпуклого шестиугольника образуют шестиугольник, противоположные стороны которого параллельны.
Докажите, что большие диагонали исходного шестиугольника пересекаются в одной точке.

Прислать комментарий     Решение

Задача 115579

Темы:   [ Вспомогательные подобные треугольники ]
[ Отношение площадей треугольников с общим углом ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9

Точка M делит среднюю линию треугольника ABC, параллельную стороне BC, на отрезки, один из которых в три раза длиннее другого. Точка N делит сторону BC на отрезки, один из которых в три раза длиннее другого. В каком отношении прямая MN делит площадь треугольника ABC?

Прислать комментарий     Решение

Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 330]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .