ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На продолжении AB, BC, CD и DA сторон выпуклого четырёхугольника ABCD откладываются отрезки BB1=AB; CC1=BC; DD1=CD; AA1=AD . Доказать, что площадь четырёхугольника A1B1C1D1 в пять раз больше площади четырёхугольника ABCD .

   Решение

Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 101]      



Задача 109008

Темы:   [ Медиана делит площадь пополам ]
[ Перегруппировка площадей ]
[ Площадь четырехугольника ]
Сложность: 3+
Классы: 8,9

На продолжении AB, BC, CD и DA сторон выпуклого четырёхугольника ABCD откладываются отрезки BB1=AB; CC1=BC; DD1=CD; AA1=AD . Доказать, что площадь четырёхугольника A1B1C1D1 в пять раз больше площади четырёхугольника ABCD .
Прислать комментарий     Решение


Задача 55132

Темы:   [ Отношения площадей (прочее) ]
[ Перегруппировка площадей ]
Сложность: 4-
Классы: 8,9

Разделим каждую сторону выпуклого четырёхугольника ABCD на три равные части и соединим отрезками соответствующие точки на противоположных сторонах (см. рис.). Докажите, что площадь "среднего" четырёхугольника в 9 раз меньше площади четырёхугольника ABCD.

Прислать комментарий     Решение

Задача 65041

Темы:   [ Две касательные, проведенные из одной точки ]
[ Перегруппировка площадей ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 4-
Классы: 9,10

Дана окружность с центром O и радиусом 1. Из точки A к ней проведены касательные AB и AC. Точка M, лежащая на окружности, такова, что четырёхугольники OBMC и ABMC имеют равные площади. Найдите MA.

Прислать комментарий     Решение

Задача 111689

Темы:   [ Разрезания на параллелограммы ]
[ Перегруппировка площадей ]
[ Монотонность и ограниченность ]
Сложность: 4-
Классы: 8,9,10,11

Квадратная доска разделена семью прямыми, параллельными одной стороне доски, и семью прямыми, параллельными другой стороне доски, на 64 прямоугольные клетки, которые покрашены в белый и чёрный цвета в шахматном порядке. Расстояния между соседними прямыми не обязательно одинаковы, поэтому клетки могут быть разных размеров. Известно, однако, что отношение площади каждой белой клетки к площади любой чёрной клетки не больше 2. Найдите наибольшее возможное отношение суммарной площади белых клеток к суммарной площади чёрных.

Прислать комментарий     Решение

Задача 116750

Темы:   [ Пятиугольники ]
[ Перегруппировка площадей ]
[ Площадь треугольника (через две стороны и угол между ними) ]
[ Площадь трапеции ]
[ Теорема косинусов ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 10,11

В выпуклом пятиугольнике ABCDE:  ∠A = ∠C = 90°,  AB = AEBC = CDAC = 1.  Найдите площадь пятиугольника.

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 101]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .