Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Автор: Иванова Е.

В шахматном турнире на звание мастера спорта участвовало 12 человек, каждый сыграл с каждым по одной партии. За победу в партии даётся 1 очко, за ничью – 0,5 очка, за поражение – 0 очков. По итогам турнира звание мастера спорта присваивали, если участник набрал более 70% от числа очков, получаемых в случае выигрыша всех партий. Могли ли получить звание мастера спорта
  а) 7 участников;
  б) 8 участников?

Вниз   Решение


Автор: Сонкин М.

В равнобедренном треугольнике ABC  (AC = BC)  точка O – центр описанной окружности, точка I – центр вписанной окружности, а точка D на стороне BC такова, что прямые OD и BI перпендикулярны. Докажите, что прямые ID и AC параллельны.

ВверхВниз   Решение


Провести хорду данной окружности, параллельную данному диаметру, так, чтобы эта хорда и диаметр были основаниями трапеций с наибольшим периметром.

Вверх   Решение

Задачи

Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 159]      



Задача 115331

Темы:   [ Вписанные и описанные окружности ]
[ Вспомогательная окружность ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Вспомогательные подобные треугольники ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 4
Классы: 8,9

Вписанная окружность треугольника ABC имеет центр I и касается сторон AB, BC, CA в точках C1, A1, B1 соответственно. Обозначим через L основание биссектрисы угла B, а через K – точку пересечения прямых B1I и A1C1. Докажите, что  KL || BB1.

Прислать комментарий     Решение

Задача 115671

Темы:   [ Геометрические неравенства (прочее) ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 4
Классы: 8,9

Трапеция с основаниями a и b описана около окружности радиуса R . Докажите, что ab 4R2 .
Прислать комментарий     Решение


Задача 109014

Темы:   [ Наибольшая или наименьшая длина ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Построения с помощью вычислений ]
Сложность: 5
Классы: 8,9,10

Провести хорду данной окружности, параллельную данному диаметру, так, чтобы эта хорда и диаметр были основаниями трапеций с наибольшим периметром.
Прислать комментарий     Решение


Задача 116364

Темы:   [ Две касательные, проведенные из одной точки ]
[ Признаки и свойства касательной ]
[ Площадь трапеции ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3-
Классы: 8,9,10

Окружность, вписанная в прямоугольную трапецию, делит её большую боковую сторону на отрезки, равные 1 и 4. Найдите площадь трапеции.
Прислать комментарий     Решение


Задача 116365

Темы:   [ Две касательные, проведенные из одной точки ]
[ Признаки и свойства касательной ]
[ Площадь трапеции ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3-
Классы: 8,9,10

Окружность, вписанная в равнобедренную трапецию, делит её боковую сторону на отрезки, равные 4 и 9. Найдите площадь трапеции.
Прислать комментарий     Решение


Страница: << 25 26 27 28 29 30 31 >> [Всего задач: 159]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .