ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

В основании призмы ABCDABCD₁ лежит параллелограмм ABCD, AB = 8, а ∠BAD = π/3. Острые углы AAB и AAD равны между
собой, а угол между ребром AA и плоскостью основания призмы равен arcsin 
³⁄₇
. Все грани призмы касаются некоторой сферы.
Найдите ребро AD и угол между плоскостями AAB и ABC, а также расстояние от точки A до центра сферы.

Вниз   Решение


Ванна заполняется холодной водой за 6 минут 40 секунд, горячей – за 8 минут. Кроме того, если из полной ванны вынуть пробку, вода вытечет за 13 минут 20 секунд. Сколько времени понадобится, чтобы наполнить ванну полностью, при условии, что открыты оба крана, но ванна не заткнута пробкой?

ВверхВниз   Решение


Развертка боковой поверхности цилиндра есть квадрат со стороной 2 . Найдите объём цилиндра.

ВверхВниз   Решение


Из таблицы

выбраны a чисел так, что никакие два из выбранных чисел не стоят в одной строке или в одном столбце таблицы. Вычислить сумму выбранных чисел.

Вверх   Решение

Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 221]      



Задача 97826

Темы:   [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 7,8,9

Рассматриваются  4(N – 1)  граничных клеток таблицы размером N×N. Нужно вписать в эти клетки последовательные  4(N – 1)  целых чисел так, чтобы сумма чисел в вершинах любого прямоугольника со сторонами, параллельными диагоналям таблицы, в том числе и в "вырожденных" прямоугольниках – диагоналях, равнялась одному и тому же числу (для прямоугольников суммируются четыре числа, для диагоналей – два числа). Возможно ли это? Рассмотрите случаи:
  а)  N = 3;
  б)  N = 4;
  в)  N = 5.

Прислать комментарий     Решение

Задача 98197

Темы:   [ Числовые таблицы и их свойства ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 7,8,9

Автор: Фольклор

Числа 1, 2, 3, ..., 25 расставляют в таблицу  5×5  так, чтобы в каждой строке числа были расположены в порядке возрастания.
Какое наибольшее и какое наименьшее значение может иметь сумма чисел в третьем столбце?

Прислать комментарий     Решение

Задача 98212

Темы:   [ Числовые таблицы и их свойства ]
[ Подсчет двумя способами ]
Сложность: 3+
Классы: 8,9,10

Автор: Савин А.П.

В таблице
    0 1 2 3 ... 9
    9 0 1 2 ... 8
    8 9 0 1 ... 7
        ...
    1 2 3 4 ... 0
отмечено 10 элементов так, что в каждой строке и каждом столбце отмечен один элемент.
Докажите, что среди отмеченных элементов есть хотя бы два равных.
Прислать комментарий     Решение


Задача 98495

Темы:   [ Числовые таблицы и их свойства ]
[ Принцип крайнего (прочее) ]
Сложность: 3+
Классы: 8,9

Дана таблица n×n, в каждой её клетке записано число, причём все числа различны. В каждой строке отметили наименьшее число, и все отмеченные числа оказались в разных столбцах. Затем в каждом столбце отметили наименьшее число, и все отмеченные числа оказались в разных строках. Докажите, что оба раза отметили одни и те же числа.

Прислать комментарий     Решение

Задача 109019

Темы:   [ Числовые таблицы и их свойства ]
[ Арифметическая прогрессия ]
Сложность: 3+
Классы: 8,9,10

Из таблицы

выбраны a чисел так, что никакие два из выбранных чисел не стоят в одной строке или в одном столбце таблицы. Вычислить сумму выбранных чисел.

Прислать комментарий     Решение

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 221]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .