ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Докажите, что если сечение параллелепипеда плоскостью является многоугольником с числом сторон, большим трёх, то у этого многоугольника есть параллельные стороны.

   Решение

Задачи

Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 65]      



Задача 87629

Темы:   [ Свойства сечений ]
[ Параллельность прямых и плоскостей ]
Сложность: 4
Классы: 10,11

Точки K и M лежат на рёбрах соответственно CD и AB пирамиды ABCD . Постройте сечение пирамиды плоскостью, проходящей через точки K и M параллельно прямой AD .
Прислать комментарий     Решение


Задача 87630

Темы:   [ Свойства сечений ]
[ Параллельность прямых и плоскостей ]
Сложность: 4
Классы: 10,11

Постройте сечение треугольной пирамиды плоскостью, проходящей через три точки, лежащие в трёх гранях пирамиды.
Прислать комментарий     Решение


Задача 111587

Темы:   [ Правильная пирамида ]
[ Параллельность прямых и плоскостей ]
Сложность: 4
Классы: 10,11

Сторона основания MNP правильной пирамиды MNPQ равна 5. Основанием правильной пирамиды SABCD является квадрат ABCD . Все вершины пирамиды SABCD расположены на рёбрах пирамиды MNPQ , причём вершина S лежит на ребре QM и MS=MQ . Найдите объём пирамиды SABCD .
Прислать комментарий     Решение


Задача 110152

Темы:   [ Тетраэдр (прочее) ]
[ Параллельность прямых и плоскостей ]
[ Симметрия относительно плоскости ]
[ Движение помогает решить задачу ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 5+
Классы: 10,11

Дана треугольная пирамида ABCD . Сфера S1 , проходящая через точки A , B , C , пересекает ребра AD , BD , CD в точках K , L , M соответственно; сфера S2 , проходящая через точки A , B , D , пересекает ребра AC , BC , DC в точках P , Q , M соответственно. Оказалось, что KL|| PQ . Докажите, что биссектрисы плоских углов KMQ и LMP совпадают.
Прислать комментарий     Решение


Задача 109079

Темы:   [ Параллелепипеды (прочее) ]
[ Свойства сечений ]
[ Параллельность прямых и плоскостей ]
Сложность: 3
Классы: 10,11

Докажите, что если сечение параллелепипеда плоскостью является многоугольником с числом сторон, большим трёх, то у этого многоугольника есть параллельные стороны.
Прислать комментарий     Решение


Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 65]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .