ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Из круга вырезан сектор, представляющий собой четверть круга. Из этого сектора и из оставшейся части круга изготовлены боковые поверхности двух конусов. Найдите отношение высот этих конусов.

   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 50]      



Задача 87486

Темы:   [ Отношение объемов ]
[ Сечения, развертки и остовы (прочее) ]
[ Теоремы Чевы и Менелая ]
Сложность: 3
Классы: 8,9

Основание пирамиды PABCD – параллелограмм ABCD . Точка K – середина ребра AP , точка N расположена на ребре CP , причём CN:NP = 1:3 , точка M расположена на продолжении ребра BC за точку B , причём BM = 2BC . Постройте сечение пирамиды плоскостью, проходящей через точки K , M , N . В каком отношении эта плоскость делит объём пирамиды?
Прислать комментарий     Решение


Задача 87487

Темы:   [ Отношение объемов ]
[ Сечения, развертки и остовы (прочее) ]
[ Теоремы Чевы и Менелая ]
Сложность: 3
Классы: 8,9

Основание пирамиды PABCD – параллелограмм ABCD . Точка M – середина ребра CP , точка N расположена на ребре AP , причём AN:NP = 2:3 , точка K расположена на ребре BP , причём PK = 2KB . Постройте сечение пирамиды плоскостью, проходящей через точки K , M , N . В каком отношении эта плоскость делит объём пирамиды?
Прислать комментарий     Решение


Задача 109301

Темы:   [ Конус ]
[ Сечения, развертки и остовы (прочее) ]
[ Площадь поверхности (прочее) ]
Сложность: 3
Классы: 10,11

Из круга вырезан сектор, представляющий собой четверть круга. Из этого сектора и из оставшейся части круга изготовлены боковые поверхности двух конусов. Найдите отношение высот этих конусов.
Прислать комментарий     Решение


Задача 116521

Темы:   [ Правильный тетраэдр ]
[ Сечения, развертки и остовы (прочее) ]
[ Теоремы Чевы и Менелая ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 3
Классы: 10,11

Тело в форме тетраэдра ABCD с одинаковыми рёбрами поставлено гранью ABC на плоскость. Точка F – середина ребра CD, точка S лежит на прямой AB,  2AB = BS  и точка B лежит между A и S. В точку S сажают муравья. Как должен муравей ползти в точку F, чтобы пройденный им путь был минимальным?

Прислать комментарий     Решение

Задача 116522

Темы:   [ Правильный тетраэдр ]
[ Сечения, развертки и остовы (прочее) ]
[ Теоремы Чевы и Менелая ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 3
Классы: 10,11

Тело в форме тетраэдра ABCD с одинаковыми рёбрами поставлено гранью ABC на плоскость. Точка F – середина ребра CD, точка S лежит на прямой AB,  AB = 2BS,  точка B лежит между A и S. В точку S сажают муравья. Как должен муравей ползти в точку F, чтобы пройденный им путь был минимальным?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 50]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .