ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Основанием пирамиды SABC является прямоугольный треугольник
ABC ( C – вершина прямого угла), причём BC = 4 , OB = Ортогональные проекции отрезка на три попарно перпендикулярные прямые равны 1, 2 и 3. Найдите длину этого отрезка.
Найдите объём треугольной пирамиды, пять рёбер которой равны
2, а шестое равно В пространстве проведены три прямые, не лежащие в одной плоскости. но при этом никакие две не являются скрещивающимися. Докажите, что все эти прямые проходят через одну точку либо параллельны. Две противоположные вершины единичного куба совпадают с центрами оснований цилиндра, а остальные вершины расположены на боковой поверхности цилиндра. Найдите высоту и радиус основания цилиндра. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 185]
Нарисуйте изображение куба, полученное в результате ортогонального проектирования куба на плоскость, перпендикулярную: а) одному из рёбер; б) диагонали одной из граней.
Расстояния от концов отрезка до плоскости равны 1 и 3. Чему может быть равно расстояние от середины этого отрезка до той же плоскости?
Плоскость, проходящая через середины рёбер AB и CD треугольной пирамиды ABCD делит ребро AD в отношении 3:1, считая от вершины A . В каком отношении эта плоскость делит ребро BC ?
Две противоположные вершины единичного куба совпадают с центрами оснований цилиндра, а остальные вершины расположены на боковой поверхности цилиндра. Найдите высоту и радиус основания цилиндра.
В параллелепипеде ABCDA1B1C1D1 проведён отрезок, соединяющий вершину A с серединой ребра CC1 . В каком отношении этот отрезок делится плоскостью BDA1 ?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 185]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке