ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Несколько школьников ходили за грибами. Школьник, набравший наибольшее количество грибов, собрал ⅕ общего количества грибов, а школьник, набравший наименьшее количество грибов, собрал 1/7 часть от общего количества. Сколько было школьников?

   Решение

Задачи

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 168]      



Задача 109458

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Средние величины ]
[ Обыкновенные дроби ]
Сложность: 3
Классы: 7,8,9

Несколько школьников ходили за грибами. Школьник, набравший наибольшее количество грибов, собрал ⅕ общего количества грибов, а школьник, набравший наименьшее количество грибов, собрал 1/7 часть от общего количества. Сколько было школьников?

Прислать комментарий     Решение

Задача 116803

Темы:   [ Исследование квадратного трехчлена ]
[ Средние величины ]
Сложность: 3
Классы: 8,9,10

Автор: Фольклор

Известно, что модули корней каждого из двух квадратных трёхчленов  x² + ax + b  и  x² + cx + d  меньше 10. Может ли трёхчлен    иметь корни, модули которых не меньше 10?

Прислать комментарий     Решение

Задача 30927

Темы:   [ Системы алгебраических неравенств ]
[ Средние величины ]
Сложность: 3+
Классы: 6,7

Докажите, что три неравенства     не могут быть все верны одновременно, если числа a1, a2, a3, b1, b2, b3 положительны.

Прислать комментарий     Решение

Задача 35532

Темы:   [ Задачи на проценты и отношения ]
[ Средние величины ]
Сложность: 3+
Классы: 7,8,9,10

Автобус называется переполненным, если в нем более 50 пассажиров. По дороге едет колонна автобусов (среди которых есть переполненные). Что больше – процент переполненных автобусов или процент пассажиров, которые едут в переполненных автобусах?

Прислать комментарий     Решение

Задача 65115

Темы:   [ Процессы и операции ]
[ Средние величины ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

После просмотра фильма зрители по очереди оценивали фильм целым числом баллов от 0 до 10. В каждый момент времени рейтинг фильма вычислялся как сумма всех выставленных оценок, делённая на их количество. В некоторый момент времени T рейтинг оказался целым числом, а затем с каждым новым проголосовавшим зрителем он уменьшался на единицу. Какое наибольшее количество зрителей могло проголосовать после момента T?

Прислать комментарий     Решение

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 168]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .