Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 275]
|
|
Сложность: 4+ Классы: 9,10
|
Радикалом натурального числа N (обозначается rad(N)) называется произведение всех простых делителей числа N, взятых по одному разу. Например,
rad(120) = 2·3·5 = 30. Существует ли такая тройка попарно взаимно простых натуральных чисел A, B, C, что A + B = C и C > 1000 rad(ABC)?
|
|
Сложность: 4+ Классы: 7,8,9,10
|
Хозяйка испекла для гостей пирог. За столом может оказаться либо p человек, либо q (p и q взаимно просты). На какое минимальное количество кусков (не обязательно равных) нужно заранее разрезать пирог, чтобы в любом случае его можно было раздать поровну?
|
|
Сложность: 4+ Классы: 8,9,10
|
Таня задумала натуральное число X ≤ 100, а Саша пытается
его угадать. Он выбирает пару натуральных чисел M и N, меньших 100, и задаёт вопрос: "Чему равен наибольший общий делитель X + M и N?" Докажите, что Саша может угадать Танино число, задав семь таких вопросов.
|
|
Сложность: 4+ Классы: 8,9,10
|
Пусть a1, a2, ..., a10 – натуральные числа, a1 < a2 < ... < a10. Пусть bk – наибольший делитель ak, меньший ak. Оказалось, что b1 > b2 > ... > b10.
Докажите, что a10 > 500.
|
|
Сложность: 5- Классы: 8,9,10
|
Найдите все такие тройки натуральных чисел m, n и l, что m + n = (НОД(m, n))², m + l = (НОД(m, l))², n + l = (НОД(n, l))².
Страница:
<< 20 21 22 23
24 25 26 >> [Всего задач: 275]