ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Ссылки по теме:
Статья "Поиск инварианта" (Ионин Ю., Курляндчик Л.) Материалы по этой теме:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На бесконечной в обе стороны полосе из клеток, пронумерованных целыми числами, лежит несколько камней (возможно, по нескольку в одной клетке). Разрешается выполнять следующие действия:
|
Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 199]
Дана таблица размером 8×8, изображающая шахматную доску. За каждый шаг разрешается поменять местами любые два столбца или любые две строки. Можно ли за несколько шагов сделать так, чтобы верхняя половина таблицы стала белой, а нижняя половина – чёрной?
В каждой вершине куба стоит число +1 или –1. В центре каждой грани куба
поставлено число, равное произведению чисел в вершинах этой грани.
Петя расставляет в вершинах куба числа 1 и –1. Андрей вычисляет произведение четырёх чисел, стоящих в вершинах каждой грани куба, и записывает его в центре этой грани. Петя утверждает, что он сможет так расставить числа, что их сумма и сумма чисел, записанных Андреем, будут противоположными. Прав ли Петя?
Страница: << 34 35 36 37 38 39 40 >> [Всего задач: 199] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|