ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 199]      



Задача 105177

Темы:   [ Свойства симметрий и осей симметрии ]
[ Разбиения на пары и группы; биекции ]
[ Инварианты ]
[ Произвольные многоугольники ]
Сложность: 4
Классы: 8,9,10,11

Бильярдный стол имеет форму многоугольника (не обязательно выпуклого), у которого соседние стороны перпендикулярны друг другу. Вершины этого многоугольника – лузы, при попадании в которые шар там и остаётся. Из вершины A с (внутренним) углом 90° выпущен шар, который отражается от бортов (сторон многоугольника) по закону "угол падения равен углу отражения". Докажите, что он никогда не вернётся в вершину A.

Прислать комментарий     Решение

Задача 64358

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Индукция (прочее) ]
[ Инварианты ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4+
Классы: 9,10,11

На плоскости нарисован квадрат, стороны которого горизонтальны и вертикальны. В нём проведены несколько отрезков, параллельных сторонам, причём никакие два отрезка не лежат на одной прямой и не пересекаются по точке, внутренней для обоих отрезков. Оказалось, что отрезки разбили квадрат на прямоугольники, причём каждая вертикальная прямая, пересекающая квадрат и не содержащая отрезков разбиения, пересекает ровно k прямоугольников разбиения, а каждая горизонтальная прямая, пересекающая квадрат и не содержащая отрезков разбиения – ровно l прямоугольников. Каким могло оказаться количество прямоугольников разбиения?

Прислать комментарий     Решение

Задача 65858

Темы:   [ Правильные многогранники (прочее) ]
[ Четность и нечетность ]
[ Инварианты ]
[ Четность перестановки ]
Сложность: 5-
Классы: 9,10,11

Муравей ползает по замкнутому маршруту по рёбрам додекаэдра, нигде не разворачиваясь назад. Маршрут проходит ровно два раза по каждому ребру.
Докажите, что некоторое ребро муравей оба раза проходит в одном и том же направлении.

Прислать комментарий     Решение

Задача 98626

Темы:   [ Разные задачи на разрезания ]
[ Четность и нечетность ]
[ Инварианты ]
[ Делимость чисел. Общие свойства ]
[ Доказательство от противного ]
Сложность: 5-
Классы: 10,11

Внутри квадрата отметили несколько точек и соединили их отрезками между собой и с вершинами квадрата так, чтобы отрезки не пересекались друг с другом (нигде кроме концов). В результате квадрат разделился на треугольники, так что все отмеченные точки оказались в вершинах треугольников, и ни одна не попала на стороны треугольников. Для каждой отмеченной точки и для каждой вершины квадрата подсчитали число проведённых из неё отрезков. Могло ли так случиться, что все эти числа оказались чётными?

Прислать комментарий     Решение

Задача 116045

Темы:   [ Процессы и операции ]
[ Принцип крайнего (прочее) ]
[ Инварианты ]
Сложность: 5
Классы: 8,9,10

За круглым столом заседают N рыцарей. Каждое утро чародей Мерлин сажает их в другом порядке. Начиная со второго дня Мерлин разрешил рыцарям делать в течение дня сколько угодно пересадок такого вида: два сидящих рядом рыцаря меняются местами, если только они не были соседями в первый день. Рыцари стараются сесть в том же порядке, что и в какой-нибудь из предыдущих дней: тогда заседания прекратятся. Какое наибольшее число дней Мерлин гарантированно может проводить заседания?
(Рассадки, получающиеся друг из друга поворотом, считаются одинаковыми. Мерлин за столом не сидит.)

Прислать комментарий     Решение

Страница: << 33 34 35 36 37 38 39 >> [Всего задач: 199]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .