Страница:
<< 32 33 34 35 36 37 38 >> [Всего задач: 199]
|
|
Сложность: 4- Классы: 8,9,10,11
|
На столе лежали две колоды, по 36 карт в каждой. Первую колоду перетасовали и положили на вторую. Затем для каждой карты первой колоды подсчитали количество карт между ней и такой же картой второй колоды (то есть сколько карт между семёрками червей, между дамами пик, и т.д.). Чему равна сумма 36 полученных чисел?
На шахматной доске расставлены во всех клетках 32 белых и 32 черных пешки. Пешка может бить пешки противоположного цвета, делая ход по диагонали на одну клетку и становясь на место взятой пешки (белые пешки могут бить только вправо-вверх и влево-вверх, а чёрные – только влево-вниз и вправо-вниз).
Другим образом пешки ходить не могут. Какое наименьшее количество пешек может остаться на доске?
|
|
Сложность: 4- Классы: 8,9,10
|
У Пети и Коли в тетрадях записаны по два числа; изначально –
это числа 1 и 2 у Пети, 3 и 4 – у Коли. Раз в минуту Петя составляет квадратный трёхчлен f(x), корнями которого являются записанные в его тетради два числа, а Коля – квадратный трёхчлен g(x), корнями которого являются записанные в его тетради два числа. Если уравнение f(x) = g(x) имеет два различных корня, то один из мальчиков заменяет свою пару чисел на эти корни; иначе ничего не происходит.
Какое второе число могло оказаться у Пети в тетради в тот момент, когда первое стало равным 5?
|
|
Сложность: 4 Классы: 9,10,11
|
Имеется бильярдный стол в виде многоугольника (не обязательно выпуклого), у которого все углы составляют целое число градусов, а угол A – в точности 1°. В вершинах находятся точечные лузы, попав в которые шар проваливается. Из вершины A вылетает точечный шар и движется внутри многоугольника, отражаясь от сторон по закону "угол падения равен углу отражения". Докажите, что он никогда не вернётся в вершину A.
|
|
Сложность: 4 Классы: 10,11
|
В каждой клетке таблицы размером 4×4 стоит знак "+" или "–". Разрешено одновременно менять знаки на противоположные в любой клетке и во всех клетках, имеющих с ней общую сторону. Сколько разных таблиц можно получить, многократно применяя такие операции?
Страница:
<< 32 33 34 35 36 37 38 >> [Всего задач: 199]