ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Обозначим S(x) сумму цифр числа x . Найдутся ли три таких натуральных числа a , b и c , что S(a+b)<5 , S(a+c)<5 и S(b+c)<5 , но S(a+b+c)>50 ? Решение |
Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 499]
Существует ли такое натуральное число n > 101000, не делящееся на 10, что в его десятичной записи можно переставить две различные ненулевые цифры так, чтобы множество его простых делителей не изменилось?
Расстоянием между числами a1a2a3a4a5 и b1b2b3b4b5 назовём максимальное i, для которого ai ≠ bi. Все пятизначные числа выписаны друг за другом в некотором порядке. Какова при этом минимально возможная сумма расстояний между соседними числами?
Фокусник с помощником собираются показать такой фокус. Зритель пишет на доске последовательность из N цифр. Помощник фокусника закрывает две соседних цифры чёрным кружком. Затем входит фокусник. Его задача – отгадать обе закрытые цифры (и порядок, в котором они расположены). При каком наименьшем N фокусник может договориться с помощником так, чтобы фокус гарантированно удался?
Страница: << 60 61 62 63 64 65 66 >> [Всего задач: 499] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|