ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Алгебра и арифметика
>>
Алгебраические неравенства и системы неравенств
>>
Классические неравенства
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Для некоторых положительных чисел x и y выполняется неравенство x² + y³ ≥ x³ + y4. Докажите, что x³ + y³ ≤ 2. Решение |
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 258]
Дан набор из нескольких гирек, на каждой написана масса. Известно, что набор масс и набор надписей одинаковы, но возможно некоторые надписи перепутаны. Весы представляют из себя горизонтальный отрезок, закреплённый за середину. При взвешивании гирьки прикрепляются в произвольные точки отрезка, после чего весы остаются в равновесии либо отклоняются в ту или иную сторону. Всегда ли удастся за одно взвешивание проверить, все надписи верны или нет? (Весы будут в равновесии, если сумма моментов гирь справа от середины равна сумме моментов гирь слева; иначе отклонятся в сторону, где сумма больше. Моментом гири называется произведение ms массы гири m на расстояние s он нее до середины отрезка.)
Докажите, что если б) a, b, c и d – положительные числа, в) a1, ..., an – положительные числа (n > 1), то
Доказать, что для любых чисел a1, ..., a1987 и положительных чисел b1,..., b1987 справедливо неравенство ≤ + ... + .
Пусть P(x) – квадратный трёхчлен с неотрицательными
коэффициентами.
Для некоторых положительных чисел x и y выполняется неравенство x² + y³ ≥ x³ + y4. Докажите, что x³ + y³ ≤ 2.
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 258] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|