Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 126]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
На шахматной доске стоят восемь ладей, не бьющих друг друга. Докажите, что среди попарных расстояний между ними найдутся два одинаковых. (Расстояние между ладьями – это расстояние между центрами клеток, в которых они стоят.)
|
|
Сложность: 4- Классы: 10,11
|
На гранях единичного куба отметили восемь точек, которые служат вершинами меньшего куба.
Найдите все значения, которые может принимать длина ребра этого куба.
|
|
Сложность: 4- Классы: 10,11
|
Какое наибольшее количество граней n-угольной пирамиды может быть перпендикулярно основанию?
Каждое из рёбер полного графа с 9 вершинами покрашено в синий или красный цвет.
Докажите, что либо есть четыре вершины, все рёбра между которыми – синие, либо есть три вершины, все рёбра между которыми – красные.
|
|
Сложность: 4 Классы: 9,10,11
|
На плоскости нарисованы 100 кругов, каждые два из которых имеют общую точку (возможно, граничную).
Докажите, что найдётся точка, принадлежащая не менее чем 15 кругам.
Страница:
<< 16 17 18 19
20 21 22 >> [Всего задач: 126]