ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Число умножили на сумму его цифр и получили 2008. Найдите это число. Даны положительные числа a1, a2, ..., an. Известно, что a1 + a2 + ... + an ≤ ½. Докажите, что (1 + a1)(1 + a2)...(1 + an) < 2. Пусть O – центр описанной окружности остроугольного треугольника ABC, SA, SB, SC – окружности с центром O, касающиеся сторон BC, CA и AB соответственно. Докажите, что сумма трёх углов: между касательными к SA, проведёнными из точки A, к SB – из точки B, и к SC – из точки C, равна 180°. Пусть a, b, c – положительные числа, сумма которых равна 1.
Докажите неравенство: Паша записал на доске пример на сложение, после чего заменил некоторые цифры буквами, причём одинаковые цифры – одинаковыми буквами, а различные цифры – различными буквами. У него получилось: КРОСС + 2011 = СТАРТ. Докажите, что Паша ошибся. Дан равносторонний треугольник ABC. Для произвольной точки P внутри треугольника рассмотрим точки A' и C' пересечения прямых AP с BC и CP с BA соответственно. Найдите геометрическое место точек P, для которых отрезки AA' и CC' равны. На плоскости дан угол и точка К внутри него. Доказать, что найдётся точка М, обладающая следующим свойством: если произвольная прямая, проходящая через К, пересекает стороны угла в точках А и В, то МК является биссектрисой угла АМВ.
Через вершины B и C треугольника ABC проведена окружность, которая пересекает
сторону AB в точке K и сторону AC в точке L. Найдите AB, если AK = KB, AL = l,
Дан квадратный трёхчлен f(x) = x² + ax + b. Уравнение f(f(x)) = 0 имеет четыре различных действительных корня, сумма двух из которых равна –1. Докажите, что b ≤ – ¼. |
Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 258]
Дан квадратный трёхчлен f(x) = x² + ax + b. Уравнение f(f(x)) = 0 имеет четыре различных действительных корня, сумма двух из которых равна –1. Докажите, что b ≤ – ¼.
Некоторые натуральные числа отмечены. Известно, что на каждом отрезке числовой прямой длины 1999 есть отмеченное число.
Даны положительные числа a1, a2, ..., an. Известно, что a1 + a2 + ... + an ≤ ½. Докажите, что (1 + a1)(1 + a2)...(1 + an) < 2.
Квадратная доска разделена на n² прямоугольных клеток n – 1 горизонтальными и n – 1 вертикальными прямыми. Клетки раскрашены в шахматном порядке. Известно, что на одной диагонали все n клеток чёрные и квадратные. Докажите, что общая площадь всех чёрных клеток доски не меньше общей площади белых.
Внутри каждой грани единичного куба выбрали по точке. Затем каждые две точки,
лежащие на соседних гранях, соединили отрезком.
Страница: << 38 39 40 41 42 43 44 >> [Всего задач: 258]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке