ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Найдите какое-нибудь такое девятизначное число N, состоящее из различных цифр, что среди всех чисел, получающихся из N вычеркиванием семи цифр, было бы не более одного простого. |
Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 499]
Найти такое трёхзначное число A², являющееся точным квадратом, что произведение его цифр равно A – 1.
Номер нынешней олимпиады (70) образован последними цифрами года её проведения, записанными в обратном порядке.
Найдите наибольшее натуральное число, из которого вычеркиванием цифр нельзя получить число, кратное 11.
Известно, что сумма цифр натурального числа N равна 100, а сумма цифр числа 5N равна 50. Докажите, что N чётно.
Найдите какое-нибудь такое девятизначное число N, состоящее из различных цифр, что среди всех чисел, получающихся из N вычеркиванием семи цифр, было бы не более одного простого.
Страница: << 39 40 41 42 43 44 45 >> [Всего задач: 499]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке