ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи ЕГЭ по математике в волшебной стране Оз устроено следующим образом. Каждую работу независимо друг от друга проверяют три преподавателя, и каждый ставит за каждую задачу 0 или 1 балл. Затем компьютер находит среднее арифметическое оценок за эту задачу и округляет его до ближайшего целого. Затем баллы, полученные за все задачи, суммируются. Случилось так, что в одной из работ каждый из трёх экспертов поставил по 1 баллу за 3 задачи и 0 баллов за все прочие задачи. Найдите наибольший возможный суммарный балл за эту работу. Пусть окружность, вписанная в треугольник ABC , касается его сторон AB , BC и AC в точках K , L и M соответственно. К окружностям, вписанным в треугольники BKL , CLM и AKM проведены попарно общие внешние касательные, отличные от сторон треугольника ABC . Докажите, что эти касательные пересекаются в одной точке.
В остроугольном треугольнике отметили отличные от
вершин точки пересечения описанной окружности с высотами,
проведенными из двух вершин, и биссектрисой, проведенной из
третьей вершины, после чего сам треугольник стерли. Восстановите
его.
|
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 44]
Четырёхугольник ABCD вписан в окружность S с центром O . Биссектриса угла ABD пересекает сторону AD и окружность S в точках K и M соответственно. Биссектриса угла CBD пересекает сторону CD и окружность S в точках L и N соответственно. Известно, что прямые KL и MN параллельны. Докажите, что описанная окружность треугольника MON проходит через середину отрезка BD .
В остроугольном треугольнике отметили отличные от
вершин точки пересечения описанной окружности с высотами,
проведенными из двух вершин, и биссектрисой, проведенной из
третьей вершины, после чего сам треугольник стерли. Восстановите
его.
Дана окружность и точка O на ней. Вторая окружность с центром O пересекает первую в точках P и Q. Точка C лежит на первой окружности, а прямые CP, CQ вторично пересекают вторую окружность в точках A и B. Докажите, что AB = PQ.
В треугольнике ABC стороны AC и BC не равны. Докажите, что
биссектриса угла C делит пополам угол между медианой и высотой,
проведёнными из вершины C, тогда и только тогда, когда
Прямая, соединяющая центр описанной окружности и точку пересечения высот неравнобедренного треугольника, параллельна биссектрисе одного из его углов. Чему равен этот угол?
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 44]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке