Версия для печати
Убрать все задачи
В равнобедренном треугольнике
ABC (
AB=BC ) точка
O –
центр описанной окружности. Точка
M лежит на отрезке
BO ,
точка
M' симметрична
M оносительно середины
AB . Точка
K – точка пересечения
M'O и
AB . Точка
L на стороне
BC такова, что
CLO = BLM . Докажите, что
точки
O ,
K ,
B ,
L лежат на одной окружности.
Решение
Через вершины
B ,
C и
D трапеции
ABCD (
AD|| BC ) проведена
окружность. Известно, что окружность касается прямой
AB , а её центр
лежит на диагонали
BD . Найдите периметр трапеции
ABCD , если
BC=9
,
AD=25
.
Решение