Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 22 задачи
Версия для печати
Убрать все задачи

Через вершину A правильного треугольника ABC под углом α ( 0<α< ) к AC проведена прямая, пересекающая BC в точке D . Найдите отношение площади треугольника ADC к площади треугольника ABC .

Вниз   Решение


Две окружности касаются друг друга внешним образом в точке A. Их общая касательная касается первой окружности в точке B, а второй в точке C. Прямая, проходящая через точки A и B, пересекает вторую окружность в точке D. Известно, что BC = 10 см, AB = 8 см. Найдите площадь треугольника BCD.

ВверхВниз   Решение


В пространстве даны две пересекающиеся сферы разных радиусов и точка A, принадлежащая обеим сферам. Докажите, что в пространстве существует точка B, обладающая следующим свойством: если через точки A и B провести произвольную окружность, то точки ее повторного пересечения с данными сферами будут равноудалены от B.

ВверхВниз   Решение


Внутри выпуклого четырехугольника ABCD площади S взята точка O, причем  AO2 + BO2 + CO2 + DO2 = 2S. Докажите, что тогда ABCD — квадрат и O — его центр.

ВверхВниз   Решение


В треугольнике ABC угол A равен α,  AB = AC = b.  Через вершину B и центр описанной окружности проведена прямая до пересечения с прямой AC в точке D. Найдите BD.

ВверхВниз   Решение


В пирамиде ABCD точки M, F и K – середины рёбер BC, AD и CD соответственно. На прямых AM и CF взяты соответственно точки P и Q, причём
PQ || BK.  Найдите отношение  PQ : BK.

ВверхВниз   Решение


Пусть ABCD — выпуклый четырехугольник, K, L, M и N — середины сторон AB, BC, CD и DA. Докажите, что точка пересечения отрезков KM и LN является серединой этих отрезков, а также и серединой отрезка, соединяющего середины диагоналей.

ВверхВниз   Решение


Бизнесмен Борис Михайлович решил устроить с трактористом Васей гонки по шоссе. Поскольку его "Лексус" едет вдесятеро быстрее Васиного трактора, он дал Васе фору и выехал через час после Васи. После того, как Васин трактор проехал ровно половину запланированной трассы, у него отвалилась рессора, поэтому оставшуюся часть пути Вася проехал вдвое медленнее, чем первую. В результате встречи с Васиной рессорой Борису Михайловичу пришлось заехать в оказавшийся рядом сервис на 4 часа, после чего он продолжил путь вдвое медленнее, чем раньше. Докажите, что в результате он отстал от Васи не менее, чем на час.

ВверхВниз   Решение


В прямоугольном треугольнике ABC отрезок BH является высотой, опущенной на гипотенузу, а BL — медианой в треугольнике BHC. Найдите угол LBC, если известно, что BL = 4 и AH = $ {\frac{9}{2\sqrt{7}}}$

ВверхВниз   Решение


В остроугольном треугольнике ABC наибольшая из высот AH равна медиане BM. Докажите, что  $ \angle$B $ \leq$ 60o.

ВверхВниз   Решение


Можно ли разрезать треугольник на три выпуклых многоугольника с попарно различным количеством сторон?

ВверхВниз   Решение


В окружность радиуса 3 вписана равнобедренная трапеция с углом 45o при основании и высотой . Найдите площадь трапеции.

ВверхВниз   Решение


Докажите, что изодинамические центры лежат на прямой KO, где O — центр описанной окружности, K — точка Лемуана.

ВверхВниз   Решение


Докажите что точки A(- 1; - 2), B(2; - 1) и C(8;1) лежат на одной прямой.

ВверхВниз   Решение


Докажите, что в треугольнике угол A острый тогда и только тогда, когда ma > a/2.

ВверхВниз   Решение


Стозначное натуральное число n назовём необычным, если десятичная запись числа n³ заканчивается на n, а десятичная запись числа n² не заканчивается на n. Докажите, что существует не менее двух стозначных необычных чисел.

ВверхВниз   Решение


В равнобочную трапецию ABCD ( BC$ \Vert$AD) вписана окружность, BC : AD = 1 : 3, площадь трапеции равна $ {\frac{\sqrt{3}}{2}}$. Найдите AB.

ВверхВниз   Решение


Даны точки A(- 2;1), B(2;5) и C(4; - 1). Точка D лежит на продолжении медианы AM за точку M, причём четырёхугольник ABDC — параллелограмм. Найдите координаты точки D.

ВверхВниз   Решение


Внутри правильного тетраэдра ABCD расположены два шара радиусов 2R и 3R , касающиеся друг друга внешним образом, причём один шар вписан в трёхгранный угол тетраэдра с вершиной в точке A , а другой – в трёхгранный угол с вершиной в точке B . Найдите длину ребра этого тетраэдра.

ВверхВниз   Решение


На доске написаны девять приведённых квадратных трёхчленов:  x² + a1x + b1x² + a2x + b2,  ...,  x² + a9x + b9. Известно, что последовательности  a1, a2, ..., a9  и  b1, b2, ..., b9  – арифметические прогрессии. Оказалось, что сумма всех девяти трёхчленов имеет хотя бы один корень. Какое наибольшее количество исходных трёхчленов может не иметь корней?

ВверхВниз   Решение


Автор: Храмцов Д.

Через центры некоторых клеток шахматной доски 8×8 проведена замкнутая ломаная без самопересечений. Каждое звено ломаной соединяет центры соседних по горизонтали, вертикали или диагонали клеток. Докажите, что в ограниченной ею части доски общая площадь чёрных кусков равна общей площади белых кусков.

ВверхВниз   Решение


Высоты остроугольного треугольника ABC пересекаются в точке O . Окружность радиуса R с центром в точке O проходит через вершину B , касается стороны AC и пересекает сторону AB в точке K такой, что BK:AK=5:1 . Найдите длину стороны BC .

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 159]      



Задача 110971

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 8,9

Высоты остроугольного треугольника ABC пересекаются в точке O . Окружность радиуса R с центром в точке O проходит через вершину B , касается стороны AC и пересекает сторону AB в точке K такой, что BK:AK=5:1 . Найдите длину стороны BC .
Прислать комментарий     Решение


Задача 110973

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 8,9

Высоты остроугольного треугольника ABC пересекаются в точке O . Окружность радиуса R с центром в точке O проходит через вершину A , касается стороны BC и пересекает сторону AC в точке M такой, что AM:MC=4:1 . Найдите длину стороны AB .
Прислать комментарий     Решение


Задача 111046

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 8,9

На окружности взята точка A , на диаметре BC — точки D и E , а на его продолжении за точку B — точка F . Найдите BC , если BAD = ACD , BAF = CAE , BD=2 , BE=5 и BF=4 .
Прислать комментарий     Решение


Задача 111048

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 3
Классы: 8,9

На диаметре AB окружности взяты точки C и D , на его продолжении за точку B — точка E , а на окружности — точка F , причём AFC = BFE , DAF = BFD , AB=8 , CB=6 и DB=5 . Найдите BE .
Прислать комментарий     Решение


Задача 111451

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

В прямоугольном треугольнике ABC из вершины прямого угла C опущена высота CD . Проекция отрезка BD на катет BC равна l , а проекция отрезка AD на катет AC равна m . Найдите гипотенузу AB .
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 159]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .