Страница:
<< 2 3 4 5 6 7 8 [Всего задач: 39]
Ортогональной проекцией правильной треугольной призмы
на плоскость, перпендикулярную одной из боковых граней,
является трапеция, у которой диагонали перпендикулярны, отношение
оснований равно 3, а площадь равна
S . Найдите площадь поверхности
призмы.
|
|
Сложность: 4+ Классы: 10,11
|
В пространстве дан треугольник ABC и сферы S1 и S2, каждая из которых проходит через точки A, B и C. Для точек M сферы S1, не лежащих в плоскости треугольника ABC, проводятся прямые MA, MB и MC, пересекающие сферу S2 вторично в точках A1, B1 и C1 соответственно. Докажите, что плоскости, проходящие через точки A1, B1 и C1, касаются фиксированной сферы либо проходят через фиксированную точку.
|
|
Сложность: 4+ Классы: 10,11
|
Доказать, что если в треугольной пирамиде две высоты пересекаются,
то две другие высоты также пересекаются.
|
|
Сложность: 4- Классы: 10,11
|
Дана треугольная пирамида ABCD с плоскими прямыми углами при вершине D, в которой CD = AD + DB.
Докажите, что сумма плоских углов при вершине C равна 90°.
Страница:
<< 2 3 4 5 6 7 8 [Всего задач: 39]