Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Дан правильный 2n-угольник.
Докажите, что на всех его сторонах и диагоналях можно расставить стрелки так, чтобы сумма полученных векторов была нулевой.

Вниз   Решение


Кое-кто в классе смотрит футбол, кое-кто – мультики, но нет таких, кто не смотрит ни то, ни другое. У любителей мультиков средний балл по математике меньше 4, у любителей футбола – тоже меньше 4. Может ли средний балл всего класса по математике быть больше 4?

ВверхВниз   Решение


В треугольной пирамиде ABCD рёбра AB и CD взаимно перпендикулярны, AD=BC , расстояние от середины E ребра AB до плоскости ACD равно h , DAC = , ACD = , угол между ребром DC и гранью ABC равен . Найдите расстояние от точки E до плоскости BCD , угол между ребром AB и гранью ACD , а также угол между гранями ABD и ABC .

ВверхВниз   Решение


Автор: Фольклор

На координатной плоскости задан график функции  y = kx + b  (см. рисунок). В той же координатной плоскости схематически постройте график функции  y = kx² + bx.

ВверхВниз   Решение


В треугольной пирамиде ABCD рёбра AB и DC взаимно перпендикулярны, ADB = , ABD = , угол между ребром CD и гранью ABD равен , AD=a , середина ребра CD равноудалена от плоскостей ABD и ABC . Найдите ребро BC , угол CDB и угол между ребром AB и гранью BCD .

ВверхВниз   Решение


Две команды КВН участвуют в игре из четырёх конкурсов. За каждый конкурс каждый из шести судей выставляет оценку – целое число от 1 до 5; компьютер находит среднее арифметическое оценок за конкурс и округляет его с точностью до десятых. Победитель определяется по сумме четырёх полученных компьютером значений. Может ли оказаться, что сумма всех оценок, выставленных судьями, у проигравшей команды больше, чем у выигравшей?

ВверхВниз   Решение


Автор: Иванов С.

В треугольнике ABC угол C – прямой. На стороне AC нашлась такая точка D, а на отрезке BD – такая точка K, что  ∠B = ∠KAD = ∠AKD.
Докажите, что  BK = 2DC.

ВверхВниз   Решение


В треугольной пирамиде ABCD рёбра BC и AD взаимно перпендикулярны, AB=CD , расстояние от середины O ребра BC до плоскости ABD равно h , CAD = CDA = , угол между ребром AD и гранью ABC равен arccos . Найдите расстояние от точки O до плоскости ACD , угол между ребром BC и гранью ABD , а также угол между гранями ABC и BCD .

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 77]      



Задача 110934

Темы:   [ Тетраэдр (прочее) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 4
Классы: 8,9

Вписанные окружности граней SBC , SAC и SAB треугольной пирамиды SABC попарно пересекаются и имеют радиусы , и соответственно. Точка K является точкой касания окружностей со стороной SA , причём SK=7 . Найдите длину отрезка AK , периметр и радиус вписанной окружности треугольника ABC .
Прислать комментарий     Решение


Задача 111165

Темы:   [ Тетраэдр (прочее) ]
[ Апофема пирамиды (тетраэдра) ]
[ Объем помогает решить задачу ]
Сложность: 4
Классы: 10,11

В треугольной пирамиде ABCD рёбра AB и CD взаимно перпендикулярны, AD=BC , расстояние от середины E ребра AB до плоскости ACD равно h , DAC = , ACD = , угол между ребром DC и гранью ABC равен . Найдите расстояние от точки E до плоскости BCD , угол между ребром AB и гранью ACD , а также угол между гранями ABD и ABC .
Прислать комментарий     Решение


Задача 111166

Темы:   [ Тетраэдр (прочее) ]
[ Апофема пирамиды (тетраэдра) ]
[ Объем помогает решить задачу ]
Сложность: 4
Классы: 10,11

В треугольной пирамиде ABCD рёбра AC и BD взаимно перпендикулярны, AB=BD=AD=a , середина ребра AC равноудалена от плоскостей ABD и BCD , угол между ребром AC и гранью CBD равен arcsin . Найдите ребро CD , угол CAD и угол между ребром BD и гранью ACD .
Прислать комментарий     Решение


Задача 111167

Темы:   [ Тетраэдр (прочее) ]
[ Апофема пирамиды (тетраэдра) ]
[ Объем помогает решить задачу ]
Сложность: 4
Классы: 10,11

В треугольной пирамиде ABCD рёбра BC и AD взаимно перпендикулярны, AB=CD , расстояние от середины O ребра BC до плоскости ABD равно h , CAD = CDA = , угол между ребром AD и гранью ABC равен arccos . Найдите расстояние от точки O до плоскости ACD , угол между ребром BC и гранью ABD , а также угол между гранями ABC и BCD .
Прислать комментарий     Решение


Задача 111168

Темы:   [ Тетраэдр (прочее) ]
[ Апофема пирамиды (тетраэдра) ]
[ Объем помогает решить задачу ]
Сложность: 4
Классы: 10,11

В треугольной пирамиде ABCD рёбра AB и DC взаимно перпендикулярны, ADB = , ABD = , угол между ребром CD и гранью ABD равен , AD=a , середина ребра CD равноудалена от плоскостей ABD и ABC . Найдите ребро BC , угол CDB и угол между ребром AB и гранью BCD .
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 77]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .