ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи
Докажите, что площадь треугольника равна удвоенному квадрату радиуса окружности, описанной около треугольника, умноженному на произведение синусов углов треугольника, т.е.
S
где
В окружность вписаны три правильных многоугольника, число сторон каждого последующего вдвое больше, чем у предыдущего. Площади первых двух равны S1 и S2. Найдите площадь третьего. Все целые числа от -33 до 100 включительно расставили в некотором порядке и рассмотрели суммы каждых двух соседних чисел. Оказалось, что среди них нет нулей. Тогда для каждой такой суммы нашли число, ей обратное. Полученные числа сложили. Могло ли в результате получится целое число? |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 138]
Выведите формулу для суммы
13 + 23 + 33 +...+ n3.
Все целые числа от -33 до 100 включительно расставили в некотором порядке и рассмотрели суммы каждых двух соседних чисел. Оказалось, что среди них нет нулей. Тогда для каждой такой суммы нашли число, ей обратное. Полученные числа сложили. Могло ли в результате получится целое число?
Докажите тождество
Преобразование Абеля. Для подсчета интегралов используется формула интегрирования по частям. Докажите следующие две формулы, которые являются дискретным аналогом интегрирования по частям и называются преобразованием Абеля:
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 138]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке