ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На отрезке и двух его неравных частях длины 2a и 2b построены полуокружности, лежащие по одну сторону от отрезка. Найдите радиус окружности,касающейся трёх построенных полуокружностей.

   Решение

Задачи

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 329]      



Задача 111533

Темы:   [ Касающиеся окружности ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 4
Классы: 8,9

Найдите радиус окружности, внутри которой расположены две окружности радиуса r и одна окружность радиуса R так, что каждая окружность касается двух других.
Прислать комментарий     Решение


Задача 111534

Темы:   [ Касающиеся окружности ]
[ Формула Герона ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 4
Классы: 8,9

На отрезке и двух его неравных частях длины 2a и 2b построены полуокружности, лежащие по одну сторону от отрезка. Найдите радиус окружности,касающейся трёх построенных полуокружностей.
Прислать комментарий     Решение


Задача 115282

Темы:   [ Касающиеся окружности ]
[ Теорема косинусов ]
[ Теорема синусов ]
Сложность: 4
Классы: 8,9

Четыре окружности попарно касаются внешним образом (в шести различных точках). Пусть a , b , c , d — их радиусы, a = , b = , g = , d = . Докажите, что

2(a2+b2+g2+d2)= (a+b+g+d)2.

Прислать комментарий     Решение

Задача 115290

Темы:   [ Касающиеся окружности ]
[ Общая касательная к двум окружностям ]
[ Гомотетия помогает решить задачу ]
Сложность: 4
Классы: 8,9

Окружности S1 и S2 касаются внешним образом в точке F . Прямая l касается S1 и S2 в точках A и B соответственно. Прямая, параллельная прямой l , касается S2 в точке C и пересекает S1 в двух точках. Докажите, что точки A , F и C лежат на одной прямой.
Прислать комментарий     Решение


Задача 115291

Темы:   [ Касающиеся окружности ]
[ Общая касательная к двум окружностям ]
Сложность: 4
Классы: 8,9

Окружности S1 и S2 касаются внешним образом в точке F . Их общая касательная l касается S1 и S2 в точках A и B соответственно. Прямая, параллельная AB , касается окружности S2 в точке C и пересекает S1 в точках D и E . Докажите, что общая хорда окружностей, описанных около треугольников ABC и BDE , проходит через точку F .
Прислать комментарий     Решение


Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 329]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .