Страница:
<< 49 50 51 52 53 54 55 [Всего задач: 275]
Пусть = , где – несократимая дробь.
Докажите, что неравенство bn+1 < bn выполнено для бесконечного числа натуральных n.
|
|
Сложность: 4 Классы: 8,9,10,11
|
На столе лежат N > 2 кучек по одному ореху в каждой. Двое ходят по очереди. За ход нужно выбрать две кучки, где числа орехов взаимно просты,
и объединить эти кучки в одну. Выиграет тот, кто сделает последний ход. Для каждого N выясните, кто из играющих может всегда выигрывать, как бы ни играл его противник.
|
|
Сложность: 4+ Классы: 8,9,10
|
Дано равенство (am1 – 1)...(amn – 1) = (ak1 + 1)...(akl + 1), где a, n, l и все показатели степени – натуральные числа, причём a > 1.
Найдите все возможные значения числа a.
Докажите, что если число n не является степенью простого числа, то существует выпуклый n-угольник со сторонами длиной 1, 2,..., n, все углы которого равны.
|
|
Сложность: 4- Классы: 6,7,8,9,10
|
а) Скупой рыцарь хранит золотые монеты в шести сундуках. Однажды,
пересчитывая их, он заметил, что если открыть любые два сундука, то можно разложить лежащие в них монеты поровну в эти два сундука. Еще он заметил, что если открыть любые 3, 4 или 5 сундуков, то тоже можно переложить лежащие в них монеты таким образом, что во всех открытых сундуках станет поровну монет. Тут ему почудился стук в дверь, и старый скряга так и не узнал, можно ли разложить все монеты поровну по всем шести сундукам. Можно ли, не заглядывая в заветные
сундуки, дать точный ответ на этот вопрос?
б) А если сундуков было восемь, а Скупой рыцарь мог разложить поровну
монеты, лежащие в любых 2, 3, 4, 5, 6 или 7 сундуках?
Страница:
<< 49 50 51 52 53 54 55 [Всего задач: 275]