Страница:
<< 24 25 26 27
28 29 30 >> [Всего задач: 187]
|
|
Сложность: 4 Классы: 8,9,10
|
Можно ли во всех точках плоскости с целыми координатами записать натуральные
числа так, чтобы три точки с целыми координатами лежали на одной прямой тогда и только тогда, когда записанные в них числа имели общий делитель, больший единицы?
|
|
Сложность: 4 Классы: 8,9,10
|
На листке бумаги написаны натуральные числа от 1 до N. Игроки по очереди обводят в кружок одно число, соблюдая условие: любые два уже обведённых
числа должны быть взаимно простыми. Два раза число обводить нельзя. Проигрывает тот, у кого нет хода.
а) Кто – начинающий игру или ходящий вторым – победит при
N = 10?
б) А при N = 12?
в) А при N = 15?
г) А при N = 30?
|
|
Сложность: 4 Классы: 8,9,10
|
Бесконечная возрастающая арифметическая прогрессия, состоящая из натуральных чисел, содержит точный куб натурального числа.
Докажите, что она содержит и точный куб, не являющийся точным квадратом.
|
|
Сложность: 4 Классы: 8,9,10
|
Для натуральных чисел a > b > 1 определим последовательность x1, x2, ... формулой . Найдите наименьшее d, при котором ни при каких a и b эта последовательность не содержит d последовательных членов, являющихся простыми числами.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Возрастающая последовательность натуральных чисел $a_1 < a_2 < \dots$ такова, что при каждом
целом $n > 100$ число $a_n$ равно наименьшему натуральному числу, большему чем $a_{n-1}$ и не делящемуся ни на одно из
чисел $a_1, a_2, \dots, a_{n-1}$. Докажите, что в такой последовательности лишь конечное
количество составных чисел.
Страница:
<< 24 25 26 27
28 29 30 >> [Всего задач: 187]