Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Четырёхугольник ABCD вписан в окружность, центр O которой лежит внутри него. Kасательные к окружности в точках A и C и прямая, симметричная BD относительно точки O, пересекаются в одной точке. Докажите, что произведения расстояний от O до противоположных сторон четырёхугольника равны.

Вниз   Решение


Треугольники ABC и A1B1C1 имеют равные площади. Всегда ли можно построить при помощи циркуля и линейки треугольник A2B2C2, равный треугольнику A1B1C1 и такой, что прямые AA2, BB2 и CC2 будут параллельны?

ВверхВниз   Решение


Точки M и N – середины боковых сторон AB и CD трапеции ABCD. Перпендикуляр, опущенный из точки M на диагональ AC, и перпендикуляр, опущенный из точки N на диагональ BD, пересекаются в точке P. Докажите, что  PA = PD.

ВверхВниз   Решение


Автор: Фольклор

Пусть I – центр окружности, вписанной в треугольник ABC. Oкружность, описанная около треугольника BIC, пересекает прямые AB и AC в точках E и F соответственно. Докажите, что прямая EF касается окружности, вписанной в треугольник ABC.

ВверхВниз   Решение


Даны точки A(2;4), B(6; - 4) и C(- 8; - 1). Докажите, что треугольник ABC прямоугольный.

ВверхВниз   Решение


На сторонах AP и PD остроугольного треугольника APD выбраны соответственно точки B и C. Диагонали четырёхугольника ABCD пересекаются в точке Q. Точки H1 и H2 являются ортоцентрами треугольников APD и BPC соответственно. Докажите, что если прямая H1H2 проходит через точку X пересечения описанных окружностей треугольников ABQ и CDQ, то она проходит и через точку Y пересечения описанных окружностей треугольников BQC и AQD.
(X ≠ Q,  Y ≠ Q.)

ВверхВниз   Решение


На хорде LM взята точка N, LN = 3, NM = 4, радиус окружности равен 5. Найдите максимальное из расстояний от точки N до точек окружности.

ВверхВниз   Решение


Автор: Исаев М.

Числа x1, x2, ..., xn таковы, что  x1x2 ≥ ... ≥ xn ≥ 0  и     Докажите, что  

Вверх   Решение

Задачи

Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 590]      



Задача 79518

Темы:   [ Классические неравенства (прочее) ]
[ Исследование квадратного трехчлена ]
Сложность: 4
Классы: 9,10,11

Доказать, что для любых чисел  a1, ..., a1987  и положительных чисел  b1,..., b1987  справедливо неравенство

+ ... + .

Прислать комментарий     Решение

Задача 109653

Темы:   [ Классические неравенства (прочее) ]
[ Выделение полного квадрата. Суммы квадратов ]
[ Квадратный трехчлен (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Пусть P(x) – квадратный трёхчлен с неотрицательными коэффициентами.
Докажите, что для любых действительных чисел x и y справедливо неравенство  (P(xy))² ≤ P(x²)P(y²).

Прислать комментарий     Решение

Задача 109811

Темы:   [ Алгебраические неравенства (прочее) ]
[ Монотонность и ограниченность ]
Сложность: 4
Классы: 8,9,10

Даны натуральное число  n > 3  и положительные числа x1, x2, ..., xn, произведение которых равно 1.
Докажите неравенство  

Прислать комментарий     Решение

Задача 111800

Тема:   [ Квадратичные неравенства (несколько переменных) ]
Сложность: 4
Классы: 9,10,11

Автор: Исаев М.

Числа x1, x2, ..., xn таковы, что  x1x2 ≥ ... ≥ xn ≥ 0  и     Докажите, что  

Прислать комментарий     Решение

Задача 116543

Тема:   [ Алгебраические неравенства (прочее) ]
Сложность: 4
Классы: 8,9

Даны положительные числа x, y, z. Докажите неравенство   

Прислать комментарий     Решение

Страница: << 42 43 44 45 46 47 48 >> [Всего задач: 590]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .