ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Подтемы:
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Через среднюю линию основания треугольной призмы, площадь боковой поверхности которой равна 24, проведена плоскость, параллельная боковому ребру. Найдите площадь боковой поверхности отсеченной треугольной призмы.


   Решение

Задачи

Страница: << 67 68 69 70 71 72 73 >> [Всего задач: 374]      



Задача 115111

Темы:   [ B9 ]
[ 4.2 ]
[ 5.2 ]
[ 5.3 ]
[ 5.4 ]
[ 5.5 ]
Сложность: 2
Классы: 11

Через среднюю линию основания треугольной призмы, площадь боковой поверхности которой равна 24, проведена плоскость, параллельная боковому ребру. Найдите площадь боковой поверхности отсеченной треугольной призмы.


Прислать комментарий     Решение

Задача 115113

Темы:   [ B9 ]
[ 4.2 ]
[ 5.2 ]
[ 5.3 ]
[ 5.4 ]
[ 5.5 ]
Сложность: 2
Классы: 11

Стороны основания правильной четырехугольной пирамиды равны 10, боковые ребра равны 13. Найдите площадь поверхности этой пирамиды.


Прислать комментарий     Решение

Задача 115114

Темы:   [ B9 ]
[ 4.2 ]
[ 5.2 ]
[ 5.3 ]
[ 5.4 ]
[ 5.5 ]
Сложность: 2
Классы: 11

Прямоугольный параллелепипед описан около цилиндра, радиус основания которого равен 6 . Объем параллелепипеда равен 36 . Найдите высоту цилиндра.


Прислать комментарий     Решение

Задача 115116

Темы:   [ B9 ]
[ 4.2 ]
[ 5.2 ]
[ 5.3 ]
[ 5.4 ]
[ 5.5 ]
Сложность: 2
Классы: 11

Стороны основания правильной шестиугольной пирамиды равны 10, боковые ребра равны 13. Найдите площадь боковой поверхности этой пирамиды.


Прислать комментарий     Решение

Задача 115118

Темы:   [ B9 ]
[ 4.2 ]
[ 5.2 ]
[ 5.3 ]
[ 5.4 ]
[ 5.5 ]
Сложность: 2
Классы: 11

Найдите площадь поверхности многогранника, изображенного на рисунке, все двугранные углы которого прямые.


Прислать комментарий     Решение

Страница: << 67 68 69 70 71 72 73 >> [Всего задач: 374]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .