ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]()
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи
Основание прямой призмы PQRP1Q1R1 – треугольник
PQR , в котором Даны пять различных положительных чисел, сумма квадратов которых равна сумме всех десяти их попарных произведений. а) Докажите, что среди пяти данных чисел найдутся три, которые не могут быть длинами сторон одного треугольника.
В треугольнике ABC стороны AB и BC равны между собой, AC = 2, а
Окружность касается сторон AB, BC, CD параллелограмма ABCD в точках K, L, M соответственно. В треугольнике KLM взяты точка A на стороне LM, а точка
B – на стороне KM. Отрезки KA и LB пересекаются в точке O, LA : AM = 3 : 4, KO : OA = 3 : 2. Дан треугольник ABC. На сторонах AB, AC и BC выбраны точки D, E и F соответственно так, что BF = 2CF, CE = 2AE и ∠DEF = 90°. |
Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 352]
В выпуклом четырёхугольнике ABCD ∠CAD + ∠BCA = 180° и AB = BC + AD. Докажите, что ∠BAC + ∠ACD = ∠CDA.
На сторонах произвольного треугольника ABC внешним образом построены равнобедренные треугольники AC1B, BA1C, CB1A с углами 2α, 2β и 2γ при вершинах A1, B1 и C1, причём α + β + γ = 180°. Докажите, что углы треугольника A1B1C1 равны α, β и γ.
На неравных сторонах AB и AC треугольника ABC внешним образом построены равнобедренные треугольники AC1B и AB1C с углом φ при вершине, O – точка серединного перпендикуляра к отрезку BC, равноудалённая от точек B1 и C1. Докажите, что ∠B1OC1 = 180° – φ.
Дан треугольник ABC. На сторонах AB, AC и BC выбраны точки D, E и F соответственно так, что BF = 2CF, CE = 2AE и ∠DEF = 90°.
Точка M взята на стороне AC равностороннего треугольника ABC, а на продолжении стороны BC за точку C отмечена точка N, причём BM = MN.
Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 352]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке