ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Через вершины A и B остроугольного треугольника ABC проведена окружность, пересекающая сторону AC в точке X , а сторону BC — в точке Y . Оказалось, что эта окружность проходит через центр описанной окружности треугольника XCY . Отрезки AY и BX пересекаются в точке P . Известно, что ACB = 2 APX . Найдите угол ACB .

   Решение

Задачи

Страница: << 56 57 58 59 60 61 62 >> [Всего задач: 500]      



Задача 110857

Темы:   [ Три окружности пересекаются в одной точке ]
[ Вписанные четырехугольники ]
Сложность: 4
Классы: 8,9

Около остроугольного треугольника ABC описана окружность. На её меньших дугах BC , AC и AB взяты точки A1 , B1 и C1 соответственно. Точки A2 , B2 и C2 – ортоцентры треугольников соответственно BA1C , AB1C и AC1B . Докажите, что описанные окружности треугольников BA2C , AB2C и AC2B пересекаются в одной точке.
Прислать комментарий     Решение


Задача 110864

Темы:   [ Вспомогательная окружность ]
[ Вписанные четырехугольники ]
Сложность: 4
Классы: 8,9

Биссектрисы внешних углов при вершинах B и C трапеции ABCD ( BC || AD ) пересекаются в точке P , а биссектрисы внешних углов при вершинах A и D – в точке Q . Прямые PB и PC пересекают прямую AD в точке E и F соответственно. Прямые AP и EQ пересекаются в точке M , а прямые PD и FQ – в точке N . Докажите, что MN || AD .
Прислать комментарий     Решение


Задача 115302

Темы:   [ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники ]
[ Шестиугольники ]
Сложность: 4
Классы: 8,9

Шестиугольник ABCDEF вписан в окружность. Оказалось, что AB=BD , CE=EF . Диагонали AC и BE пересекаются в точке X , диагонали BE и DF — в точке Y , диагонали BF и AE — в точке Z . Докажите, что треугольник XYZ — равнобедренный.
Прислать комментарий     Решение


Задача 115319

Темы:   [ Углы между биссектрисами ]
[ Вписанные четырехугольники ]
Сложность: 4
Классы: 8,9

В треугольнике ABC с углом B , равным 60o , проведена биссектриса CL . Пусть I — центр вписанной окружности треугольника ABC . Описанная окружность треугольника ALI пересекает сторону AC в точке D . Докажите, что точки B , L , D и C лежат на одной окружности.
Прислать комментарий     Решение


Задача 115329

Темы:   [ Величина угла между двумя хордами и двумя секущими ]
[ Вписанные четырехугольники ]
Сложность: 4
Классы: 8,9

Через вершины A и B остроугольного треугольника ABC проведена окружность, пересекающая сторону AC в точке X , а сторону BC — в точке Y . Оказалось, что эта окружность проходит через центр описанной окружности треугольника XCY . Отрезки AY и BX пересекаются в точке P . Известно, что ACB = 2 APX . Найдите угол ACB .
Прислать комментарий     Решение


Страница: << 56 57 58 59 60 61 62 >> [Всего задач: 500]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .