ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На левую чашу весов положили два шара радиусов 3 и 5, а на правую — один шар радиуса 8. Какая из чаш перевесит? (Все шары изготовлены целиком из одного и того же материала.)

   Решение

Задачи

Страница: << 256 257 258 259 260 261 262 [Всего задач: 1308]      



Задача 109859

Темы:   [ Индукция в геометрии ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Разбиения на пары и группы; биекции ]
[ Комбинаторная геометрия (прочее) ]
[ Объединение, пересечение и разность множеств ]
Сложность: 5
Классы: 10,11

На плоскости рассматривается конечное множество равных, параллельно расположенных квадратов, причем среди любых k+1 квадратов найдутся два пересекающихся. Докажите, что это множество можно разбить не более чем на 2k-1 непустых подмножеств так, что в каждом подмножестве все квадраты будут иметь общую точку.
Прислать комментарий     Решение


Задача 115389

Темы:   [ Неравенства с объемами ]
[ Объем тела равен сумме объемов его частей ]
[ Касающиеся сферы ]
[ Шар и его части ]
[ Объем шара, сегмента и проч. ]
[ Взвешивания ]
Сложность: 3+
Классы: 10,11

На левую чашу весов положили два шара радиусов 3 и 5, а на правую — один шар радиуса 8. Какая из чаш перевесит? (Все шары изготовлены целиком из одного и того же материала.)
Прислать комментарий     Решение


Задача 109840

Темы:   [ Геометрия на клетчатой бумаге ]
[ Целочисленные решетки (прочее) ]
[ Алгебраические методы ]
[ Метод координат на плоскости ]
[ Свойства суммы, разности векторов и произведения вектора на число ]
[ Разложение вектора по двум неколлинеарным векторам ]
[ Теория игр (прочее) ]
Сложность: 5+
Классы: 8,9,10,11

В клетчатом прямоугольнике 49×69 отмечены все 50· 70 вершин клеток. Двое играют в следующую игру: каждым своим ходом каждый игрок соединяет две точки отрезком, при этом одна точка не может являться концом двух проведенных отрезков. Отрезки могут содержать общие точки. Отрезки проводятся до тех пор, пока точки не кончатся. Если после этого первый может выбрать на всех проведенных отрезках направления так, что сумма всех полученных векторов равна нулевому вектору, то он выигрывает, иначе выигрывает второй. Кто выигрывает при правильной игре?
Прислать комментарий     Решение


Страница: << 256 257 258 259 260 261 262 [Всего задач: 1308]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .