ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Двое играют на треугольной доске (см. рис.), закрашивая по очереди на ней треугольные клеточки. Одна клетка (начальная) уже закрашена перед началом игры. Первым ходом закрашивается клеточка, граничащая (по стороне) с начальной, а каждым следующим ходом — клетка, граничащая с только что закрашенной. Повторно клетки красить нельзя. Тот, кто не может сделать ход, проигрывает. Кто — начинающий или его соперник — победит в этой игре, как бы ни играл его партнёр? Рассмотрите случаи: а) Начальная клетка — угловая, поле любого размера; б) Поле и начальная клетка как на рисунке к этому заданию; в) Общий случай: поле любого размера, и начальная клетка в нём произвольная. г) Дополнительное задание. Можно подумать, что начальная клетка определяет исход партии независимо от действий игроков. Нарисуйте, однако, на каком-нибудь поле примеры таких двух партий с одной и той же начальной клеткой, чтобы в первой побеждал начинающий, а во второй — его партнёр. Для удобства нумеруйте клетки: начальная — 0, первым ходом красится клетка 1, вторым — 2 и т. д. Решение |
Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 278]
Первым ходом закрашивается клеточка, граничащая (по стороне) с начальной, а каждым следующим ходом — клетка, граничащая с только что закрашенной. Повторно клетки красить нельзя. Тот, кто не может сделать ход, проигрывает. Кто — начинающий или его соперник — победит в этой игре, как бы ни играл его партнёр? Рассмотрите случаи: а) Начальная клетка — угловая, поле любого размера; б) Поле и начальная клетка как на рисунке к этому заданию; в) Общий случай: поле любого размера, и начальная клетка в нём произвольная. г) Дополнительное задание. Можно подумать, что начальная клетка определяет исход партии независимо от действий игроков. Нарисуйте, однако, на каком-нибудь поле примеры таких двух партий с одной и той же начальной клеткой, чтобы в первой побеждал начинающий, а во второй — его партнёр. Для удобства нумеруйте клетки: начальная — 0, первым ходом красится клетка 1, вторым — 2 и т. д.
Двое играют в следующую игру. Ходят по очереди. Один называет два числа, являющихся концами отрезка. Следующий должен назвать два других числа, являющихся концами отрезка, вложенного в предыдущий. Игра продолжается бесконечно долго. Первый стремится, чтобы в пересечении всех названных отрезков было хотя бы одно рациональное число, а второй стремится ему помешать. Кто выигрывает?
Двое пишут а) 30-значное; б) 20-значное число, употребляя только цифры 1, 2, 3, 4, 5. Первую цифру пишет первый, вторую – второй, третью – первый и т. д. Может ли второй добиться того, чтобы полученное число разделилось на 9, если первый стремится ему помешать?
Страница: << 19 20 21 22 23 24 25 >> [Всего задач: 278] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|