ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Двое играют на треугольной доске (см. рис.), закрашивая по очереди на ней треугольные клеточки. Одна клетка (начальная) уже закрашена перед началом игры.
Первым ходом закрашивается клеточка, граничащая (по стороне) с начальной, а каждым следующим ходом — клетка, граничащая с только что закрашенной. Повторно клетки красить нельзя. Тот, кто не может сделать ход, проигрывает. Кто — начинающий или его соперник — победит в этой игре, как бы ни играл его партнёр?
Рассмотрите случаи:
а) Начальная клетка — угловая, поле любого размера;
б) Поле и начальная клетка как на рисунке к этому заданию;
в) Общий случай: поле любого размера, и начальная клетка в нём произвольная.
г) Дополнительное задание. Можно подумать, что начальная клетка определяет исход партии независимо от действий игроков. Нарисуйте, однако, на каком-нибудь поле примеры таких двух партий с одной и той же начальной клеткой, чтобы в первой побеждал начинающий, а во второй — его партнёр. Для удобства нумеруйте клетки: начальная — 0, первым ходом красится клетка 1, вторым — 2 и т. д.


   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 165]      



Задача 115394

Темы:   [ Теория игр (прочее) ]
[ Шахматная раскраска ]
Сложность: 4-
Классы: 8,9,10,11

Двое играют на треугольной доске (см. рис.), закрашивая по очереди на ней треугольные клеточки. Одна клетка (начальная) уже закрашена перед началом игры.
Первым ходом закрашивается клеточка, граничащая (по стороне) с начальной, а каждым следующим ходом — клетка, граничащая с только что закрашенной. Повторно клетки красить нельзя. Тот, кто не может сделать ход, проигрывает. Кто — начинающий или его соперник — победит в этой игре, как бы ни играл его партнёр?
Рассмотрите случаи:
а) Начальная клетка — угловая, поле любого размера;
б) Поле и начальная клетка как на рисунке к этому заданию;
в) Общий случай: поле любого размера, и начальная клетка в нём произвольная.
г) Дополнительное задание. Можно подумать, что начальная клетка определяет исход партии независимо от действий игроков. Нарисуйте, однако, на каком-нибудь поле примеры таких двух партий с одной и той же начальной клеткой, чтобы в первой побеждал начинающий, а во второй — его партнёр. Для удобства нумеруйте клетки: начальная — 0, первым ходом красится клетка 1, вторым — 2 и т. д.


Прислать комментарий     Решение

Задача 35635

Темы:   [ Теория игр (прочее) ]
[ Рациональные и иррациональные числа ]
Сложность: 4-
Классы: 10,11

Двое играют в следующую игру. Ходят по очереди. Один называет два числа, являющихся концами отрезка. Следующий должен назвать два других числа, являющихся концами отрезка, вложенного в предыдущий. Игра продолжается бесконечно долго. Первый стремится, чтобы в пересечении всех названных отрезков было хотя бы одно рациональное число, а второй стремится ему помешать. Кто выигрывает?

Прислать комментарий     Решение

Задача 60813

Темы:   [ Теория игр (прочее) ]
[ Делимость чисел. Общие свойства ]
[ Признаки делимости на 3 и 9 ]
Сложность: 4-
Классы: 7,8,9,10

Двое пишут  а) 30-значное;  б) 20-значное число, употребляя только цифры 1, 2, 3, 4, 5. Первую цифру пишет первый, вторую – второй, третью – первый и т. д. Может ли второй добиться того, чтобы полученное число разделилось на 9, если первый стремится ему помешать?

Прислать комментарий     Решение

Задача 60904

Темы:   [ Теория игр (прочее) ]
[ Двоичная система счисления ]
Сложность: 4-
Классы: 8,9,10,11

Коля Васин задумал число от 1 до 31 включительно и выбрал из 5 данных карточек

1 3 5 7
9 11 13 15
17 19 21 23
25 27 29 31
    
2 3 6 7
10 11 14 15
18 19 22 23
26 27 30 31
    
4 5 6 7
12 13 14 15
20 21 22 23
28 29 30 31

8 9 10 11
12 13 14 15
24 25 26 27
28 29 30 31
    
16 17 18 19
20 21 22 23
24 25 26 27
28 29 30 31
те, на которых это число присутствует. Как, зная эти карточки, угадать задуманное число? Какими должны быть карточки, чтобы по ним можно было угадывать числа от 1 до 63?

Прислать комментарий     Решение

Задача 60905

Темы:   [ Теория игр (прочее) ]
[ Троичная система счисления ]
Сложность: 4-
Классы: 7,8,9,10,11

Карточный фокус. а) Берется колода из 27 карт (без одной масти). Ваш друг загадывает одну из карт. После чего вы раскладываете все карты в три равные кучки, кладя каждый раз по одной карте (в первую кучку, затем во вторую, затем в третью, потом снова в первую и т. д.). Ваш друг указывает на ту кучку, в которой лежит его карта. Далее вы складываете все три кучки вместе, вставляя при этом указанную кучку между двумя другими. Эта процедура повторяется еще два раза. На каком месте в колоде окажется загаданная карта, после того, как вы сложите вместе три кучки в третий раз?
б) На каком месте окажется загаданная карта, если с самого начала было 3n (n < 9) карт?

Прислать комментарий     Решение

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 165]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .