ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Разрежьте крест, составленный из пяти одинаковых квадратов, на три многоугольника, равных по площади и периметру.

   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



Задача 56791

Тема:   [ Прямые и кривые, делящие фигуры на равновеликие части ]
Сложность: 5
Классы: 9

Точки A и B окружности S1 соединены дугой окружности S2, делящей площадь круга, ограниченного S1, на равные части. Докажите, что дуга S2, соединяющая A и B, по длине больше диаметра S1.
Прислать комментарий     Решение


Задача 56792

Тема:   [ Прямые и кривые, делящие фигуры на равновеликие части ]
Сложность: 5
Классы: 9

Кривая $ \Gamma$ делит квадрат на две части равной площади. Докажите, что на ней можно выбрать две точки A и B так, что прямая AB проходит через центр O квадрата.
Прислать комментарий     Решение


Задача 116184

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Прямые и кривые, делящие фигуры на равновеликие части ]
Сложность: 2+
Классы: 8,9

Автор: Фольклор

В шестиугольнике пять углов по 90°, а один угол — 270° (см. рисунок). C помощью линейки без делений разделите его на два равновеликих многоугольника.

Прислать комментарий     Решение

Задача 115731

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Геометрия на клетчатой бумаге ]
Сложность: 3+
Классы: 7,8,9,11

Разрежьте крест, составленный из пяти одинаковых квадратов, на три многоугольника, равных по площади и периметру.

Прислать комментарий     Решение

Задача 65469

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Теорема Пика ]
Сложность: 4-
Классы: 8,9,10,11

Дан клетчатый квадрат 10×10. Внутри него провели 80 единичных отрезков по линиям сетки, которые разбили квадрат на 20 многоугольников равной площади. Докажите, что все эти многоугольники равны.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .