Страница:
<< 1 2 3 4 5
6 >> [Всего задач: 29]
|
|
Сложность: 5- Классы: 9,10,11
|
Рассматривается произвольный многоугольник (не обязательно выпуклый).
а) Всегда ли найдётся хорда многоугольника, которая делит его на две
равновеликие части?
б) Докажите, что любой многоугольник можно разделить некоторой хордой на
части, площадь каждой из которых не меньше чем ⅓ площади многоугольника. (Хордой многоугольника называется отрезок, концы которого принадлежат
контуру многоугольника, а сам он целиком принадлежит многоугольнику,
включая контур.)
|
|
Сложность: 5 Классы: 9,10,11
|
а) Многоугольник обладает следующим свойством: если провести прямую через
любые две точки, делящие его периметр пополам, то эта прямая разделит многоугольник на два равновеликих многоугольника. Верно ли, что многоугольник центрально симметричен?
б) Верно ли, что любая фигура, обладающая свойством, указанным в п.а), центрально симметрична?
|
|
Сложность: 5+ Классы: 8,9,10
|
Даны выпуклый
n-угольник с попарно непараллельными сторонами и точка
O внутри его. Докажите, что через точку
O нельзя провести
более
n прямых, каждая из которых делит площадь
n-угольника пополам.
|
|
Сложность: 2 Классы: 8,9,10
|
Через вершины A и B треугольника ABC проведены две прямые, которые разбивают его на четыре фигуры (три треугольника и один четырёхугольник). Известно, что три из этих фигур имеют одинаковую площадь. Докажите, что одна из этих фигур – четырёхугольник.
Докажите, что прямая, делящая пополам периметр и площадь треугольника, проходит через центр его вписанной окружности.
Страница:
<< 1 2 3 4 5
6 >> [Всего задач: 29]