ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Внутри квадрата ABCD взята точка E. Пусть ET – высота треугольника ABE, K – точка пересечения прямых DT и AE, M – точка пересечения прямых CT и BE. Докажите, что отрезок KM – сторона квадрата, вписанного в треугольник ABE.

   Решение

Задачи

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 512]      



Задача 115588

Темы:   [ Вспомогательные подобные треугольники ]
[ Площадь трапеции ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Отношение площадей подобных треугольников ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 8,9

Площадь трапеции ABCD равна 240. Диагонали пересекаются в точке O, отрезки, соединяющие середину P основания AD с вершинами B и C, пересекаются с диагоналями трапеции в точках M и N. Найдите площадь четырёхугольника OMPN, если одно из оснований трапеции втрое больше другого.

Прислать комментарий     Решение

Задача 115589

Темы:   [ Вспомогательные подобные треугольники ]
[ Площадь трапеции ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Отношение площадей подобных треугольников ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
Сложность: 3+
Классы: 8,9

Площадь трапеции ABCD равна 240. Диагонали пересекаются в точке O, отрезки, соединяющие середину P основания AD с вершинами B и C, пересекаются с диагоналями трапеции в точках M и N. Найдите площадь треугольника MON, если одно из оснований трапеции втрое больше другого.

Прислать комментарий     Решение

Задача 115611

Темы:   [ Вспомогательные подобные треугольники ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 3+
Классы: 8,9

Угол A треугольника ABC в два раза больше угла B. Докажите, что  BC² = (AC + AB)AC.

Прислать комментарий     Решение

Задача 115724

Темы:   [ Вспомогательные подобные треугольники ]
[ Вспомогательные равные треугольники ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Правильный (равносторонний) треугольник ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3+
Классы: 8,9

Точки P и Q лежат на сторонах соответственно BC и CD квадрата ABCD, причём треугольник APQ – равносторонний. Прямая, проходящая через точку P перпендикулярно стороне AQ, пересекает AD в точке E. Точка F расположена вне треугольника APQ, причём треугольники PQF и AQE равны.
Докажите, что  FE = 2FC.

Прислать комментарий     Решение

Задача 115913

Темы:   [ Вспомогательные подобные треугольники ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+
Классы: 8,9

Внутри квадрата ABCD взята точка E. Пусть ET – высота треугольника ABE, K – точка пересечения прямых DT и AE, M – точка пересечения прямых CT и BE. Докажите, что отрезок KM – сторона квадрата, вписанного в треугольник ABE.

Прислать комментарий     Решение

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 512]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .