ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Тема:
Все темы
>>
Геометрия
>>
Планиметрия
>>
Треугольники
>>
Подобные треугольники
>>
Вспомогательные подобные треугольники
|
||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Внутри квадрата ABCD взята точка E. Пусть ET – высота треугольника ABE, K – точка пересечения прямых DT и AE, M – точка пересечения прямых CT и BE. Докажите, что отрезок KM – сторона квадрата, вписанного в треугольник ABE. Решение |
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 512]
Площадь трапеции ABCD равна 240. Диагонали пересекаются в точке O, отрезки, соединяющие середину P основания AD с вершинами B и C, пересекаются с диагоналями трапеции в точках M и N. Найдите площадь четырёхугольника OMPN, если одно из оснований трапеции втрое больше другого.
Площадь трапеции ABCD равна 240. Диагонали пересекаются в точке O, отрезки, соединяющие середину P основания AD с вершинами B и C, пересекаются с диагоналями трапеции в точках M и N. Найдите площадь треугольника MON, если одно из оснований трапеции втрое больше другого.
Угол A треугольника ABC в два раза больше угла B. Докажите, что BC² = (AC + AB)AC.
Точки P и Q лежат на сторонах соответственно BC и CD квадрата ABCD, причём треугольник APQ – равносторонний. Прямая, проходящая через точку P перпендикулярно стороне AQ, пересекает AD в точке E. Точка F расположена вне треугольника APQ, причём треугольники PQF и AQE равны.
Внутри квадрата ABCD взята точка E. Пусть ET – высота треугольника ABE, K – точка пересечения прямых DT и AE, M – точка пересечения прямых CT и BE. Докажите, что отрезок KM – сторона квадрата, вписанного в треугольник ABE.
Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 512] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|