Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 517]      



Задача 54803

Темы:   [ Вспомогательные подобные треугольники ]
[ Вспомогательная окружность ]
[ Угол между касательной и хордой ]
Сложность: 4-
Классы: 8,9

Через точку O проведены две прямые, касающиеся окружности в точках M и N. На окружности взята точка K (O и K лежат по разные стороны от прямой MN). Расстояния от точки K до прямых OM и MN равны соответственно p и q. Найдите расстояние от точки k до прямой ON.

Прислать комментарий     Решение

Задача 55037

Темы:   [ Вспомогательные подобные треугольники ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Правильный (равносторонний) треугольник ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Вписанные четырехугольники (прочее) ]
[ Поворот помогает решить задачу ]
Сложность: 4-
Классы: 8,9

На сторонах AB, AC и BC правильного треугольника ABC расположены соответственно точки C1, B1 и A1 так, что треугольник A1B1C1 – правильный. Отрезок BB1 пересекает сторону C1A1 в точке O, причём  BO/OB1 = k.  Найдите отношение площади треугольника ABC к площади треугольника A1B1C1.

Прислать комментарий     Решение

Задача 55038

Темы:   [ Вспомогательные подобные треугольники ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Правильный (равносторонний) треугольник ]
[ Вписанные четырехугольники (прочее) ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
[ Поворот помогает решить задачу ]
Сложность: 4-
Классы: 8,9

На сторонах AB, AC и BC правильного треугольника ABC расположены соответственно точки C1, B1 и A1, причём треугольник A1B1C1 является правильным. Высота BD треугольника ABC пересекает сторону A1C1 в точке O. Найдите отношение BO/BD, если  A1B1/AB = n.

Прислать комментарий     Решение

Задача 55097

Темы:   [ Вспомогательные подобные треугольники ]
[ Теорема Пифагора (прямая и обратная) ]
[ Удвоение медианы ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 4. Найдите стороны треугольника ABC.

Прислать комментарий     Решение

Задача 55238

Темы:   [ Вспомогательные подобные треугольники ]
[ Экстремальные свойства треугольника (прочее) ]
[ Неравенство Коши ]
[ Вписанные и описанные окружности ]
Сложность: 4-
Классы: 8,9

В треугольник с периметром 2p вписана окружность. К этой окружности проведена касательная, параллельная стороне треугольника. Найдите наибольшую возможную длину отрезка этой касательной, заключённого внутри треугольника.

Прислать комментарий     Решение

Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 517]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .