ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Найдите радиусы описанной, вписанной и вневписанных окружностей треугольника со сторонами 13, 14, 15.

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 125]      



Задача 116366

Темы:   [ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Две касательные, проведенные из одной точки ]
Сложность: 3-
Классы: 8,9,10

В треугольнике ABC известно, что AB = 10, BC = 24, а медиана BD равна 13. Окружности, вписанные в треугольники ABD и BDC касаются медианы BD в точках M и N соответственно. Найдите MN.

Прислать комментарий     Решение

Задача 52555

Темы:   [ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3
Классы: 8,9

Центр окружности, описанной около треугольника, совпадает с центром вписанной окружности. Найдите углы треугольника.

Прислать комментарий     Решение


Задача 52974

Темы:   [ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

В треугольнике ABC угол A – прямой, угол B равен 30°. В треугольник вписана окружность радиуса  .
Найдите расстояние от вершины C до точки касания этой окружности с катетом AB.

Прислать комментарий     Решение

Задача 52977

Темы:   [ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Теорема Пифагора (прямая и обратная) ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 3
Классы: 8,9

В треугольнике ABC угол A прямой, катет AB равен a, радиус вписанной окружности равен r . Вписанная окружность касается катета AC в точке D.
Найдите хорду, соединяющую точки пересечения окружности с прямой BD.

Прислать комментарий     Решение

Задача 115929

Темы:   [ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Теорема синусов ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
Сложность: 3
Классы: 8,9

Найдите радиусы описанной, вписанной и вневписанных окружностей треугольника со сторонами 13, 14, 15.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 125]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .