ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

Найдите наименьшее число, кратное 45, десятичная запись которого состоит только из единиц и нулей.

   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 106]      



Задача 35012

Тема:   [ Признаки делимости на 3 и 9 ]
Сложность: 2
Классы: 7,8

Известно, что  35! = 10333147966386144929*66651337523200000000.  Найдите цифру, заменённую звездочкой.

Прислать комментарий     Решение

Задача 64504

Темы:   [ Признаки делимости на 3 и 9 ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 2
Классы: 6,7

Запишите несколько раз подряд число 2013 так, чтобы получившееся число делилось на 9.

Прислать комментарий     Решение

Задача 88088

Темы:   [ Признаки делимости на 3 и 9 ]
[ Десятичная система счисления ]
Сложность: 2
Классы: 6,7,8

Пусть M – произвольное 1992-значное число, кратное 9. Сумму цифр этого числа обозначим через A. Сумму цифр числа A обозначим через B. Сумму цифр числа B обозначим через C. Чему равно число C?

Прислать комментарий     Решение

Задача 88104

Тема:   [ Признаки делимости на 3 и 9 ]
Сложность: 2
Классы: 6,7,8

Делится ли число  102002 + 8  на 9?

Прислать комментарий     Решение

Задача 115970

Темы:   [ Признаки делимости на 3 и 9 ]
[ Признаки делимости на 5 и 10 ]
Сложность: 2
Классы: 8,9,10

Автор: Фольклор

Найдите наименьшее число, кратное 45, десятичная запись которого состоит только из единиц и нулей.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 106]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .