ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В треугольнике ABC AA1 и BB1 – высоты. На стороне AB выбраны точки M и K так, что B1K || BC и MA1 || AC. Докажите, что ∠AA1K = ∠BB1M. Решение |
Страница: << 118 119 120 121 122 123 124 >> [Всего задач: 829]
В параллелограмме ABCD биссектрисы углов при стороне AD делят сторону BC точками M и N так, что BM : MN = 1 : 7. Найдите BC, если AB = 12.
Внутри квадрата ABCD взята точка E. Пусть ET – высота треугольника ABE, K – точка пересечения прямых DT и AE, M – точка пересечения прямых CT и BE. Докажите, что отрезок KM – сторона квадрата, вписанного в треугольник ABE.
Четырёхугольник ABCD вписан в окружность. Перпендикуляр, опущенный из вершины C на биссектрису угла ABD, пересекает прямую AB в точке C1; перпендикуляр, опущенный из вершины B на биссектрису угла ACD, пересекает прямую CD в точке B1. Докажите, что B1C1 || AD.
В треугольнике ABC AA1 и BB1 – высоты. На стороне AB выбраны точки M и K так, что B1K || BC и MA1 || AC. Докажите, что ∠AA1K = ∠BB1M.
На стороне ВС равностороннего треугольника АВС отмечены точки K и L так, что BK = KL = LC, а на стороне АС отмечена точка М так,
Страница: << 118 119 120 121 122 123 124 >> [Всего задач: 829] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|