ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 119 120 121 122 123 124 125 >> [Всего задач: 829]      



Задача 116820

Темы:   [ Параллелограммы (прочее) ]
[ Две касательные, проведенные из одной точки ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Средняя линия треугольника ]
[ Вспомогательные подобные треугольники ]
Сложность: 3+
Классы: 8,9

Окружность касается сторон AB, BC, CD параллелограмма ABCD в точках K, L, M соответственно.
Докажите, что прямая KL делит пополам высоту параллелограмма, опущенную из вершины C на AB.

Прислать комментарий     Решение

Задача 116965

Темы:   [ Текстовые задачи (прочее) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Три точки, лежащие на одной прямой ]
Сложность: 3+
Классы: 6,7,8

Три квадратные дорожки с общим центром отстоят друг от друга на 1 м (см. рис.). Три муравья стартуют одновременно из левых нижних углов дорожек и бегут с одинаковой скоростью: Му и Ра против часовой стрелки, а Вей по часовой. Когда Му добежал до правого нижнего угла большой дорожки, двое других, не успев ещё сделать полного круга, находились на правых сторонах своих дорожек, и все трое оказались на одной прямой. Найдите стороны квадратов.

Прислать комментарий     Решение

Задача 66963

Темы:   [ ГМТ (прочее) ]
[ Задачи на движение ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы: 8,9,10

Участники тараканьих бегов бегут по окружности в одном направлении, стартовав одновременно из точки $S$. Таракан $A$ бежит вдвое медленнее, чем $B$, и втрое медленнее, чем $C$. Точки $X$, $Y$ на отрезке $SC$ таковы, что $SX=XY=YC$. Прямые $AX$ и $BY$ пересекаются в точке $Z$. Найдите ГМТ пересечения медиан треугольника $ZAB$.
Прислать комментарий     Решение


Задача 67030

Темы:   [ Симметрия помогает решить задачу ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
Сложность: 3+
Классы: 9,10,11

В остроугольном треугольнике $ABC$ проведена биссектриса $AL$. На продолжении отрезка $LA$ за точку $A$ выбрана точка $K$ так, что $AK = AL$. Описанные окружности треугольников $BLK$ и $CLK$ пересекают отрезки $AC$ и $AB$ в точках $P$ и $Q$ соответственно. Докажите, что прямые $PQ$ и $BC$ параллельны.
Прислать комментарий     Решение


Задача 53636

Темы:   [ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Параллельные прямые, свойства и признаки. Секущие ]
Сложность: 4-
Классы: 8,9

На боковых сторонах AB и BC равнобедренного треугольника ABC взяты соответственно точки M и N так, что  BM = CN.
Докажите, что середина отрезка MN лежит на средней линии треугольника BC, параллельной его основанию.

Прислать комментарий     Решение

Страница: << 119 120 121 122 123 124 125 >> [Всего задач: 829]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .