ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 122 123 124 125 126 127 128 >> [Всего задач: 829]      



Задача 56717

Темы:   [ Радикальная ось ]
[ Пересекающиеся окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Выход в пространство ]
Сложность: 4-
Классы: 9

На плоскости даны три попарно пересекающиеся окружности. Через точки пересечения каждых двух из них проведена прямая.
Докажите, что эти три прямые пересекаются в одной точке или параллельны.

Прислать комментарий     Решение

Задача 64910

Темы:   [ Медиана, проведенная к гипотенузе ]
[ Вписанные и описанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Свойства биссектрис, конкуррентность ]
Сложность: 4-
Классы: 8,9

Пусть BM – медиана прямоугольного треугольника ABC  (∠B = 90°).  Окружность, вписанная в треугольник ABM, касается сторон AB, AM в точках A1, A2; аналогично определяются точки C1, C2. Докажите, что прямые A1A2 и C1C2 пересекаются на биссектрисе угла ABC.

Прислать комментарий     Решение

Задача 64968

Темы:   [ Вписанные и описанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Симметрия помогает решить задачу ]
[ Центральная симметрия помогает решить задачу ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Ортоцентр и ортотреугольник ]
Сложность: 4-
Классы: 8,9,10

Около треугольника ABC описали окружность. A1 – точка пересечения с нею прямой, параллельной BC и проходящей через A. Точки B1 и C1 определяются аналогично. Из точек A1, B1, C1 опустили перпендикуляры на BC, CA, AB соответственно. Докажите, что эти три перпендикуляра пересекаются в одной точке.

Прислать комментарий     Решение

Задача 65036

Темы:   [ Трапеции (прочее) ]
[ Три точки, лежащие на одной прямой ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Признаки подобия ]
Сложность: 4-
Классы: 8,9

В трапеции ABCD диагонали пересекаются в точке O. На боковой стороне CD выбрана точка M, а на основаниях BC и AD – точки P и Q так, что отрезки MP и MQ параллельны диагоналям трапеции. Докажите, что прямая PQ проходит через точку O.

Прислать комментарий     Решение

Задача 65459

Темы:   [ Прямоугольные треугольники (прочее) ]
[ Вписанные и описанные окружности ]
[ Три точки, лежащие на одной прямой ]
[ Вписанный угол равен половине центрального ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 9,10,11

Даны равнобедренный прямоугольный треугольник ABC и прямоугольный треугольник ABD с общей гипотенузой AB (D и C лежат по одну сторону от прямой AB). Пусть DK – биссектриса треугольника ABD. Докажите, что центр описанной окружности треугольника ACK лежит на прямой AD.

Прислать комментарий     Решение

Страница: << 122 123 124 125 126 127 128 >> [Всего задач: 829]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .