Страница:
<< 118 119 120 121
122 123 124 >> [Всего задач: 829]
В параллелограмме ABCD биссектрисы углов при стороне AD делят сторону BC точками M и N так, что BM : MN = 1 : 7. Найдите BC, если AB = 12.
Внутри квадрата ABCD взята точка E. Пусть ET – высота треугольника ABE, K – точка пересечения прямых DT и AE, M – точка пересечения прямых CT и BE. Докажите, что
отрезок KM – сторона квадрата, вписанного в треугольник ABE.
|
|
Сложность: 3+ Классы: 9,10,11
|
Четырёхугольник ABCD вписан в окружность. Перпендикуляр, опущенный из вершины C на биссектрису угла ABD, пересекает прямую AB в точке C1; перпендикуляр, опущенный из вершины B на биссектрису угла ACD, пересекает прямую CD в точке B1. Докажите, что B1C1
|| AD.
В треугольнике ABC AA1 и BB1 – высоты. На стороне AB выбраны точки M и K так, что B1K || BC и MA1 || AC. Докажите, что ∠AA1K = ∠BB1M.
|
|
Сложность: 3+ Классы: 7,8,9
|
На стороне ВС равностороннего треугольника АВС отмечены точки K и L так, что BK = KL = LC, а на стороне АС отмечена точка М так,
что АМ = ⅓ AC. Найдите сумму углов AKM и ALM.
Страница:
<< 118 119 120 121
122 123 124 >> [Всего задач: 829]