ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На плоскости даны 10 прямых общего положения. При каждой точке пересечения выбирается наименьший угол, образованный проходящими через неё прямыми. Найдите наибольшую возможную сумму всех этих углов. По данному натуральному числу a0 строится последовательность {an} следующим образом Квадрат ABCD со стороной 2 и квадрат DEFK со стороной 1 стоят рядом на верхней стороне AK квадрата AKLM со стороной 3. Между парами точек A и E, B и F, C и K, D и L натянуты паутинки. Паук поднимается снизу вверх по маршруту AEFB и спускается по маршруту CKDL. Какой маршрут короче?
Дана последовательность неотрицательных чисел a1 , a2 ,
an . Для любого k от 1 до n обозначим через mk величину
Докажите, что при любом α>0 число тех k , для которых mk>α , меньше, чем a1+a2+...+an α.
|
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 50]
Правильные треугольники ABC, CDE, EHK (вершины обходятся в направлении против часовой стрелки) расположены на плоскости так,
что
На сторонах треугольника ABC построены вне треугольника
равносторонние треугольники BCA1 , CAB1 , ABC1 , и
проведены отрезки AA1 , BB1 и CC1 . Докажите, что
а) Для данного треугольника ABC, все углы которого меньше
120o,
найдите точку, сумма расстояний от которой до вершин минимальна.
Дан произвольный центрально-симметричный шестиугольник. На его сторонах, как на основаниях, построены во внешнюю сторону правильные треугольники. Доказать, что середины отрезков, соединяющих вершины соседних треугольников, образуют правильный шестиугольник.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 50]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке