Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости лежит игла. Разрешается поворачивать иглу на 45° вокруг любого из её концов.
Можно ли, сделав несколько таких поворотов, добиться того, чтобы игла вернулась на исходное место, но при этом её концы поменялись местами?

   Решение

Задачи

Страница: << 71 72 73 74 75 76 77 >> [Всего задач: 414]      



Задача 78839

Темы:   [ Ряд Фарея ]
[ Обыкновенные дроби ]
[ НОД и НОК. Взаимная простота ]
[ Индукция (прочее) ]
[ Теорема Пика ]
Сложность: 4
Классы: 8,9,10,11

Рассмотрим все рациональные числа между нулём и единицей, знаменатели которых не превосходят n, расположенные в порядке возрастания (ряд Фарея). Пусть a/b и c/d – какие-то два соседних числа (дроби несократимы). Доказать, что  |bc – ad| = 1.

Прислать комментарий     Решение

Задача 79261

Темы:   [ НОД и НОК. Взаимная простота ]
[ Последовательности (прочее) ]
[ Числовые таблицы и их свойства ]
[ Индукция (прочее) ]
[ Алгоритм Евклида ]
Сложность: 4
Классы: 9,10,11

В концах отрезка пишутся две единицы. Посередине между ними пишется их сумма – число 2. Затем посередине между каждыми двумя соседними из написанных чисел снова пишется их сумма и так далее 1973 раза. Сколько раз будет написано число 1973?

Прислать комментарий     Решение

Задача 102995

Темы:   [ Характеристические свойства и рекуррентные соотношения ]
[ Доказательство от противного ]
[ Примеры и контрпримеры. Конструкции ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 9,10,11

Автор: Стунжас Л.

Существуют ли такие две функции  f и g, принимающие только целые значения, что для любого целого x выполнены соотношения:
  а)  f(f(x)) = x,  g(g(x)) = x,   f(g(x)) > x,  g(f(x)) > x?
  б)  f(f(x)) < x, g(g(x)) < x,   f(g(x)) > x,  g(f(x)) > x?

Прислать комментарий     Решение

Задача 105131

Темы:   [ Разные задачи на разрезания ]
[ Подсчет двумя способами ]
[ Выпуклые многоугольники ]
[ Индукция в геометрии ]
[ Принцип Дирихле (углы и длины) ]
Сложность: 4
Классы: 8,9,10

Остроугольный треугольник разрезали прямолинейным разрезом на две (не обязательно треугольные) части, затем одну из этих частей – опять на две части, и так далее: на каждом шаге выбирали любую из уже имеющихся частей и разрезали её (по прямой) на две. Через несколько шагов оказалось, что исходный треугольник распался на несколько треугольников. Могут ли все они быть тупоугольными?

Прислать комментарий     Решение

Задача 116415

Темы:   [ Процессы и операции ]
[ Инварианты ]
[ Векторы помогают решить задачу ]
[ Индукция в геометрии ]
Сложность: 4
Классы: 10,11

На плоскости лежит игла. Разрешается поворачивать иглу на 45° вокруг любого из её концов.
Можно ли, сделав несколько таких поворотов, добиться того, чтобы игла вернулась на исходное место, но при этом её концы поменялись местами?

Прислать комментарий     Решение

Страница: << 71 72 73 74 75 76 77 >> [Всего задач: 414]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .