Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Докажите, что если числа x, y, z при некоторых значениях p и q являются решениями системы
     y = xn + px + q,  z = yn + py + q,  x = zn + pz + q,
то выполнено неравенство  x²y + y²z + z²x ≥ x²z + y²x + z²y.
Рассмотрите случаи   а)  n = 2;   б)  n = 2010.

Вниз   Решение


Около сферы описан пространственный четырёхугольник. Доказать, что точки касания лежат в одной плоскости.

ВверхВниз   Решение


Точки А1 и А3 расположены по одну сторону от плоскости α, а точки А2 и А4 – по другую сторону. Пусть В1, В2, В3 и В4 – точки пересечения отрезков А1А2, А2А3, А3А4 и А4А1 с плоскостью α соответственно. Найдите  

ВверхВниз   Решение


Окружность S и точка O лежат в одной плоскости, причём O находится вне окружности. Построим произвольный шар, проходящий через окружность S, и опишем конус с вершиной в точке O и касающийся шара. Найти геометрическое место центров окружностей, по которым конусы касаются шаров.

ВверхВниз   Решение


Существует ли такое положительное число α, что при всех действительных x верно неравенство   |cos x| + |cos αx| > sin x + sin αx?

ВверхВниз   Решение


Автор: Фольклор

Решите неравенство:  

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 101]      



Задача 66357

Тема:   [ Иррациональные неравенства ]
Сложность: 2
Классы: 8

Известно, что     где  x > 0,  y > 0,  z > 0.  Докажите, что  

Прислать комментарий     Решение

Задача 116430

Тема:   [ Иррациональные неравенства ]
Сложность: 2
Классы: 9,10,11

Автор: Фольклор

Решите неравенство:  

Прислать комментарий     Решение

Задача 64834

Тема:   [ Иррациональные неравенства ]
Сложность: 2+
Классы: 8,9,10

Существует ли такое x, что    ?

Прислать комментарий     Решение

Задача 35464

Темы:   [ Доказательство тождеств. Преобразования выражений ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 2+
Классы: 8,9

Докажите, что сумма $\frac {1}{\sqrt {1} + \sqrt {2}} + \frac {1}{\sqrt {2} + \sqrt {3}} + \dots + \frac {1}{\sqrt {99} + \sqrt {100}}$ является целым числом.
Прислать комментарий     Решение


Задача 78174

Тема:   [ Квадратные корни (прочее) ]
Сложность: 2+
Классы: 9,10

Даны две бочки бесконечно большой емкости. Можно ли, пользуясь двумя ковшами емкостью 2 - $ \sqrt{2}$ и $ \sqrt{2}$, перелить из одной в другую ровно 1 литр?
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 101]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .