Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Квадратная доска разделена на n² прямоугольных клеток  n – 1  горизонтальными и  n – 1  вертикальными прямыми. Клетки раскрашены в шахматном порядке. Известно, что на одной диагонали все n клеток чёрные и квадратные. Докажите, что общая площадь всех чёрных клеток доски не меньше общей площади белых.

Вниз   Решение


Прямая отсекает треугольник AKN от правильного шестиугольника ABCDEF так, что  AK + AN = AB.
Найдите сумму углов, под которыми отрезок KN виден из вершин шестиугольника  (∠KAN + ∠KBN + ∠KCN + ∠KDN + ∠KEN + ∠KFN).

ВверхВниз   Решение


Внутри стороны BC правильного треугольника ABC взята точка D. Прямая, проходящая через точку C и параллельная AD, пересекает прямую AB в точке E. Докажите, что  

ВверхВниз   Решение


Футбольный мяч сшит из 32 лоскутков: белых шестиугольников и чёрных пятиугольников. Каждый чёрный лоскут граничит только с белыми, а каждый белый — с тремя чёрными и тремя белыми. Сколько лоскутков белого цвета?

ВверхВниз   Решение


Тело в форме тетраэдра ABCD с одинаковыми рёбрами поставлено гранью ABC на плоскость. Точка F – середина ребра CD, точка S лежит на прямой AB,  AB = 2BS,  точка B лежит между A и S. В точку S сажают муравья. Как должен муравей ползти в точку F, чтобы пройденный им путь был минимальным?

Вверх   Решение

Задачи

Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 352]      



Задача 111725

Темы:   [ Свойства симметрии и центра симметрии ]
[ Прямые и кривые, делящие фигуры на равновеликие части ]
[ Вспомогательные равные треугольники ]
[ Площади криволинейных фигур ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5
Классы: 9,10,11

а) Многоугольник обладает следующим свойством: если провести прямую через любые две точки, делящие его периметр пополам, то эта прямая разделит многоугольник на два равновеликих многоугольника. Верно ли, что многоугольник центрально симметричен?
б) Верно ли, что любая фигура, обладающая свойством, указанным в п.а), центрально симметрична?

Прислать комментарий     Решение

Задача 116521

Темы:   [ Правильный тетраэдр ]
[ Сечения, развертки и остовы (прочее) ]
[ Теоремы Чевы и Менелая ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 3
Классы: 10,11

Тело в форме тетраэдра ABCD с одинаковыми рёбрами поставлено гранью ABC на плоскость. Точка F – середина ребра CD, точка S лежит на прямой AB,  2AB = BS  и точка B лежит между A и S. В точку S сажают муравья. Как должен муравей ползти в точку F, чтобы пройденный им путь был минимальным?

Прислать комментарий     Решение

Задача 116522

Темы:   [ Правильный тетраэдр ]
[ Сечения, развертки и остовы (прочее) ]
[ Теоремы Чевы и Менелая ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 3
Классы: 10,11

Тело в форме тетраэдра ABCD с одинаковыми рёбрами поставлено гранью ABC на плоскость. Точка F – середина ребра CD, точка S лежит на прямой AB,  AB = 2BS,  точка B лежит между A и S. В точку S сажают муравья. Как должен муравей ползти в точку F, чтобы пройденный им путь был минимальным?

Прислать комментарий     Решение

Задача 116523

Темы:   [ Правильный тетраэдр ]
[ Сечения, развертки и остовы (прочее) ]
[ Теоремы Чевы и Менелая ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 3
Классы: 10,11

Тело в форме тетраэдра ABCD с одинаковыми рёбрами поставлено гранью ABC на плоскость. Точка F лежит на ребре CD и  2DF = FC,  точка S лежит на прямой AB,  AB = 3BS  и точка B лежит между A и S. В точку S сажают муравья. Как должен муравей ползти в точку F, чтобы пройденный им путь был минимальным?

Прислать комментарий     Решение

Задача 53689

Темы:   [ Правильный (равносторонний) треугольник ]
[ Средняя линия треугольника ]
[ Признаки и свойства параллелограмма ]
[ Вспомогательные равные треугольники ]
Сложность: 3+
Классы: 8,9

Два равносторонних треугольника ABC и CDE расположены по одну сторону от прямой AE и имеют единственную общую точку C. Пусть M, N и K – середины отрезков BD, AC и CE соответственно. Докажите, что треугольник MNK равносторонний.

Прислать комментарий     Решение

Страница: << 62 63 64 65 66 67 68 >> [Всего задач: 352]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .