Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 100]
|
|
Сложность: 3 Классы: 8,9,10
|
Числа a и b таковы, что a³ – b³ = 2, a5 – b5 ≥ 4. Докажите, что a² + b² ≥ 2.
|
|
Сложность: 3 Классы: 8,9,10
|
Даны десять положительных чисел, каждые два из которых различны. Докажите, что среди них найдутся либо три числа, произведение которых больше произведения каких-нибудь двух из оставшихся, либо три числа, произведение которых больше произведения каких-нибудь четырёх из оставшихся.
|
|
Сложность: 3 Классы: 8,9,10
|
Даны 10 попарно различных чисел. Для каждой пары данных чисел Вася записал у себя в тетради квадрат их разности, а Петя записал у себя в тетради модуль разности их квадратов. Могли ли в тетрадях у мальчиков получиться одинаковые наборы из 45 чисел?
|
|
Сложность: 3 Классы: 10,11
|
Сравните: sin 3 и sin 3°.
|
|
Сложность: 3 Классы: 8,9,10
|
Существуют ли такие 2013 различных натуральных чисел, что сумма каждых 2012 из них не меньше квадрата оставшегося?
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 100]